Алгоритм масштабирования потока — различия между версиями
Zemskovk (обсуждение | вклад) м |
Zemskovk (обсуждение | вклад) м (→Оценка времени работы) |
||
Строка 16: | Строка 16: | ||
== Оценка времени работы == | == Оценка времени работы == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Лемма | {{Лемма | ||
|about= | |about= | ||
Строка 43: | Строка 37: | ||
|proof= | |proof= | ||
На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше <tex> 2^k </tex>. | На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше <tex> 2^k </tex>. | ||
− | Дополняющий поток на предыдущем шаге ограничен значением <tex> 2^{k + 1} E </tex>. Следовательно, на каждой итерации количество дополняющих путей не превосходит <tex> 2E </tex>. | + | Дополняющий поток на предыдущем шаге ограничен значением <tex> 2^{k + 1} E </tex>. Следовательно, на каждой итерации количество дополняющих путей не превосходит <tex> 2E </tex>.}} |
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>. | ||
+ | |proof= | ||
+ | В ходе выполнения алгоритма масштаб <tex> \Delta </tex> принимает следующие значения: <tex> S = \{2^{\lfloor \log_2 U \rfloor}, \ldots, 2^k, \ldots, 2, 1, 0\} </tex>. Тогда <tex> |S| = O(\log U) </tex> {{---}} количество итераций алгоритма. | ||
Количество итераций алгоритма {{---}} <tex> O(\log U) </tex>, значит, суммарное количество увеличивающих путей {{---}} <tex> O(E \log U) </tex>. | Количество итераций алгоритма {{---}} <tex> O(\log U) </tex>, значит, суммарное количество увеличивающих путей {{---}} <tex> O(E \log U) </tex>. | ||
− | |||
− | Алгоритм [[Обход_в_ширину|обхода в ширину]] находит каждый дополняющий путь за время <tex> O(E) </tex>. Следовательно, суммарное время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>. | + | Алгоритм [[Обход_в_ширину|обхода в ширину]] находит каждый дополняющий путь за время <tex> O(E) </tex>. Следовательно, суммарное время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>.}} |
− | }} | ||
== Псевдокод == | == Псевдокод == |
Версия 21:07, 2 января 2016
Алгоритм
Пусть дана сеть , все ребра которой имеют целочисленную пропускную способность. Обозначим за максимальную пропускную способность: .
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом . Изначально положим .
На каждой итерации в дополняющей сети алгоритм находит дополняющие пути с пропускной способностью не меньшей и увеличивает поток вдоль них. Уменьшив масштаб в раза, переходит к следующей итерации.
Очевидно, что при Эдмондса-Карпа, вследствие чего является корректным.
алгоритм вырождается в алгоритмКоличество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.
Оценка времени работы
Лемма (1): |
Максимальный поток в сети ограничен сверху значением , где — значение потока при масштабе . |
Доказательство: |
В конце итерации с масштабом разрез . , сеть может быть разбита на два непересекающихся множества и так, что остаточная пропускная способность каждого ребра, идущего из в , не превосходит масштаба . То есть образуетсяПри этом, количество таких ребер не превосходит Значит, значение остаточного потока не может превосходить . . |
Лемма (2): |
Суммарное количество увеличивающих путей — . |
Доказательство: |
На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше Дополняющий поток на предыдущем шаге ограничен значением . . Следовательно, на каждой итерации количество дополняющих путей не превосходит . |
Утверждение: |
Время работы алгоритма — . |
В ходе выполнения алгоритма масштаб принимает следующие значения: . Тогда — количество итераций алгоритма.Количество итераций алгоритма — Алгоритм , значит, суммарное количество увеличивающих путей — . обхода в ширину находит каждый дополняющий путь за время . Следовательно, суммарное время работы алгоритма — . |
Псевдокод
Max_Flow_By_Scaling(G,s,t)while do while в существует увеличивающий путь с пропускной способностью не меньшей do увеличить поток по рёбрам на обновить return