Задача коммивояжера, ДП по подмножествам — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оптимизация решения)
(Перенаправление на Гамильтоновы графы)
 
(не показаны 4 промежуточные версии 3 участников)
Строка 1: Строка 1:
{{Задача
+
#перенаправление [[Гамильтоновы графы]]
|definition =
 
'''Задача о коммивояжере''' (англ. ''Travelling salesman problem, TSP'') — задача, в которой коммивояжер должен посетить <tex> N </tex> городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?
 
}}
 
 
 
== Варианты решения  ==
 
 
 
[[NP-полнота задач о гамильтоновом цикле и пути в графах]]
 
 
 
Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.
 
 
 
==== Перебор перестановок ====
 
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все <tex> N! </tex> всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших <tex>N</tex>. Сложность алгоритма  <tex>O({N!}\times{N})</tex>.
 
 
 
==== Динамическое программирование по подмножествам (по маскам) ====
 
 
 
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
 
 
 
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам — дороги. Пусть в графе <tex> G=(V,E)</tex>  <tex> N </tex>
 
вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.
 
 
 
Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости — путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>.
 
 
 
Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>.
 
 
 
Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>d[i][mask]</tex> уже  найденный оптимальный путь от <tex>i</tex>-ой вершины до <tex>0</tex>-ой, проходящий через те вершины, где <tex>mask_j=1</tex>. Если <tex>mask_j=0</tex>,то эти вершины еще не посещены).
 
 
 
*Начальное состояние — когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен <tex>0</tex> (т.е. <tex>i = 0</tex> и <tex>mask = 0</tex>).
 
*Для остальных состояний (<tex>i \ne 0</tex> или <tex>mask \ne 0</tex>) перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат.
 
*Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>).
 
 
 
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> — стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.
 
 
 
Для того, чтобы восстановить сам путь, воспользуемся соотношением <tex> d[i][mask] = w(i, j) + d[j][mask - 2^j] </tex>,  которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния <tex> i = 0 </tex>, <tex> mask = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> mask = mask - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> mask = 0 </tex>.
 
 
 
==== Оптимизация решения ====
 
 
 
Пусть <tex>dp[mask][i]</tex> содержит булево значение — существует ли в подмножества <tex>mask</tex> гамильтонов путь, заканчивающийся в вершине <tex>i</tex>.
 
 
 
Сама динамика будет такая: <br>
 
<tex>
 
d[mask][i] = \left\{\begin{array}{llcl}
 
1&;\ |mask| = 1,\ mask_i = 1\\
 
\bigvee_{mask[j]=1, (j, i) \in E}\limits d[mask \oplus 2^i][j] &;\ |mask| > 1,\ mask_i= 1 \\
 
 0&;\ во всех остальных случаях\\
 
\end{array}\right.
 
</tex>
 
 
 
Это решение требует <tex>O(2^nn)</tex> памяти и <tex>O(2^nn^2)</tex> времени. Эту оценку можно улучшить, если изменить динамику следующим образом.
 
 
 
Пусть теперь <tex>d'[mask]</tex> хранит маску подмножества всех вершин, для которых существует гамильтонов путь в подмножестве <tex>mask</tex>, заканчивающихся в этой вершине. Другими словами, сожмем предыдущую динамику: <tex>d'[mask]</tex> будет равно <tex>\sum_{i \in [0..n-1]}\limits d[mask][i] \cdot 2 ^i </tex>. Для графа <tex>G</tex> выпишем <tex>n</tex> масок <tex>M_i</tex>, для каждой вершины задающие множество вершин, которые связаны ребром в данной вершиной. То есть <tex>M_i = \sum_{j \in [0..n-1]}\limits 2^i \cdot ((i, j) \in E ? 1:0) </tex>.
 
 
 
Тогда динамика перепишется следующим образом: <br>
 
<tex>
 
d'[mask][i] = \left\{\begin{array}{llcl}
 
2^i&;\ |mask| = 1,\ mask_i = 1\\
 
\sum_{j \in [0..n-1]}\limits 2^i \cdot ((d[mask \oplus 2^i] \& M_i) \neq 0?1:0) &;\ |mask| > 1 \\
 
 0&;\ во всех остальных случаях\\
 
\end{array}\right.
 
</tex>
 
 
 
Особое внимание следует уделить выражению <tex>d[mask \oplus 2^i] \& M_i</tex> . Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве <tex>mask</tex> без вершины <tex>i</tex>, а вторая — подмножество вершин, связанных с <tex>i</tex> ребром. Если эти множества пересекаются хотя бы по одной вершине (их <tex>\&</tex> не равен <tex>0</tex>), то, как нетрудно понять, в <tex>mask</tex> существует гамильтонов путь, заканчивающийся в вершине <tex>i</tex>.
 
 
 
Окончательная проверка состоит в сравнении <tex>d[2^n - 1]</tex> c <tex>0</tex>.
 
 
 
Это решение использует <tex>O(2^n)</tex> памяти и имеет асимптотику <tex>O(2^nn)</tex>.
 
 
 
== Реализация ==
 
Прежде чем писать код, скажем пару слов о порядке обхода состояний. Обозначим за <tex>|mask|</tex> количество единиц в маске (иначе говоря количество пройденных вершин не считая текущей). Тогда, поскольку при рассмотрении состояния <tex>\langle i, mask \rangle</tex> мы смотрим на состояния
 
 
 
<tex>\langle j, mask - 2^j \rangle</tex>, и <tex>|mask| = |mask - 2^j| + 1</tex>, то состояния с большим <tex>|mask|</tex> должны быть посещены позже, чтобы к моменту вычисления текущего состояния были вычислены все те, которые используются для его подсчёта.
 
Однако если использовать рекурсию, об этом можно не беспокоиться  (и сэкономить немало кода, времени и памяти).
 
  //Все переменные используются из описания алгоритма, <tex>\infty</tex> = бесконечность
 
  '''function''' findCheapest(i, mask):
 
    '''if''' d[i][mask] != <tex>\infty</tex>
 
      '''return''' d[i][mask]
 
    '''for''' j = 0 .. n - 1
 
      '''if''' w(i, j) существует '''and''' j-ый бит mask == 1 
 
        d[i][mask] = '''min'''(d[i][mask], ''findCheapest''(j, mask - 2 ** j) + w(i, j))
 
      '''return''' d[i][mask]
 
 
 
  '''for''' i = 0 .. n - 1
 
    '''for''' mask = 0 .. 2 ** n - 1
 
    d[i][mask] = <tex>\infty</tex>
 
  d[0][0] = 0;
 
  ans = ''findCheapest'' (0, 2 ** n - 1)
 
  if ans == <tex>\infty</tex>
 
    exit
 
Дальше ищем сам путь:
 
  i = 0
 
  mask = 2 ** n - 1
 
  path.'''push'''(0)
 
  '''while''' mask != 0
 
    '''for''' j = 0 .. n - 1
 
      '''if''' w(i, j) существует '''and''' j-ый бит mask == 1 '''and''' d[i][mask] == d[j][mask - 2 ** j] + w(i, j)
 
        path.'''push'''(j)
 
        i = j
 
        mask = mask - 2 ** j
 
        '''continue'''
 
 
 
== См. также ==
 
 
 
*[[Кратчайший путь в ациклическом графе]]
 
*[[Задача о наибольшей общей подпоследовательности]]
 
*[[Задача о наибольшей возрастающей подпоследовательности]]
 
*[[Задача о рюкзаке]]
 
*[[Алгоритм нахождения Гамильтонова цикла в условиях теорем Дирака и Оре]]
 
*[[Гамильтоновы графы]]
 
 
 
== Источники информации ==
 
*[http://ru.wikipedia.org/wiki/Задача_коммивояжёра Задача коммивояжера в русской википедии]
 
 
 
*[http://de.wikipedia.org/wiki/Problem_des_Handlungsreisenden Задача коммивояжера в немецкой википедии]
 
 
 
*''Романовский И. В.'' Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
 
 
 
*''Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К.'' Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4
 
 
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Динамическое программирование]]
 

Текущая версия на 20:48, 9 января 2016

Перенаправление на: