Сложение и разность потоков — различия между версиями
Lytr777 (обсуждение | вклад) м (переименовал Лемма о сложении потоков в Сложение и разность потоков) |
Lytr777 (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
− | |||
{{Лемма | {{Лемма | ||
+ | |about = | ||
+ | о сложении потоков | ||
|statement= | |statement= | ||
Пусть <tex> G = (V, E) </tex> {{---}} [[Определение_сети,_потока#flow_network|транспортная сеть]] с источником <tex>s</tex> и стоком <tex>t</tex>, а <tex> f </tex> {{---}} [[Определение_сети,_потока#flow|поток]] в <tex>G</tex>. Пусть <tex> G_f </tex> {{---}} [[Дополняющая_сеть,_дополняющий_путь#residual_network|остаточная сеть]] в <tex>G</tex>, порожденная потоком <tex>f</tex>, а <tex> f' </tex> {{---}} поток в <tex>G_f</tex>. Тогда сумма потоков <tex>f + f'</tex>, определяемая уравнением <tex>(f + f')(u, v) = f(u,v) + f'(u,v)</tex>, является потоком в <tex>G</tex>, и [[Определение_сети,_потока#flow|величина]] этого потока равна <tex>|f + f'| = |f| + |f'|</tex>. | Пусть <tex> G = (V, E) </tex> {{---}} [[Определение_сети,_потока#flow_network|транспортная сеть]] с источником <tex>s</tex> и стоком <tex>t</tex>, а <tex> f </tex> {{---}} [[Определение_сети,_потока#flow|поток]] в <tex>G</tex>. Пусть <tex> G_f </tex> {{---}} [[Дополняющая_сеть,_дополняющий_путь#residual_network|остаточная сеть]] в <tex>G</tex>, порожденная потоком <tex>f</tex>, а <tex> f' </tex> {{---}} поток в <tex>G_f</tex>. Тогда сумма потоков <tex>f + f'</tex>, определяемая уравнением <tex>(f + f')(u, v) = f(u,v) + f'(u,v)</tex>, является потоком в <tex>G</tex>, и [[Определение_сети,_потока#flow|величина]] этого потока равна <tex>|f + f'| = |f| + |f'|</tex>. | ||
Строка 20: | Строка 21: | ||
}} | }} | ||
− | + | ||
{{Лемма | {{Лемма | ||
+ | |about = | ||
+ | о разности потоков | ||
|statement= | |statement= | ||
− | + | Пусть <tex> G = (V, E) </tex> {{---}} транспортная сеть с источником <tex>s</tex> и стоком <tex>t</tex>, а <tex>h</tex> и <tex> f </tex> {{---}} [[Определение_сети,_потока#flow|потоки]] в <tex> G </tex>. Пусть <tex>G_f</tex> {{---}} [[Дополняющая_сеть,_дополняющий_путь#residual_network|остаточная сеть]] в <tex>G</tex>, порожденная потоком <tex>f</tex>. Тогда разность потоков <tex>h - f</tex>, определяемая уравнением <tex>(h - f)(u, v) = h(u,v) - f(u,v)</tex>, является потоком в <tex>G_f</tex>, и величина этого потока равна <tex>|h - f| = |h| - |f|</tex>. | |
|proof= | |proof= | ||
Антисимметричность и правило сохранения потока для <tex>h - f</tex> проверяются аналогично лемме о сложении потоков. | Антисимметричность и правило сохранения потока для <tex>h - f</tex> проверяются аналогично лемме о сложении потоков. |
Версия 05:58, 12 января 2016
Лемма (о сложении потоков): |
Пусть транспортная сеть с источником и стоком , а — поток в . Пусть — остаточная сеть в , порожденная потоком , а — поток в . Тогда сумма потоков , определяемая уравнением , является потоком в , и величина этого потока равна . — |
Доказательство: |
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения потока. 1) Для подтверждения антисимметричности заметим, что для всех справедливо:
|
Лемма (о разности потоков): |
Пусть потоки в . Пусть — остаточная сеть в , порожденная потоком . Тогда разность потоков , определяемая уравнением , является потоком в , и величина этого потока равна . — транспортная сеть с источником и стоком , а и — |
Доказательство: |
Антисимметричность и правило сохранения потока для проверяются аналогично лемме о сложении потоков.Покажем соблюдение ограничений пропускной способности. . Теперь покажем, что величина потока равна разности величин потоков и . |
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.