Верхние и нижние оценки хроматического числа — различия между версиями
(→Верхняя оценка количеством ребер) |
(→Нижняя оценка количеством ребер и количеством вершин) |
||
Строка 45: | Строка 45: | ||
{{Лемма | {{Лемма | ||
|about = нижняя оценка Геллера | |about = нижняя оценка Геллера | ||
− | |statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами. Тогда, <tex>\frac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>. | + | |statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами. Тогда, <tex dpi=140>\frac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>. |
|proof= | |proof= | ||
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. | Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. | ||
− | <tex>m \leqslant \frac{1}{2}n(n - 1) - \frac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \frac{n^2}{n^2 - 2m} \leqslant \frac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \frac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi</tex>. | + | <tex dpi=140>m \leqslant \frac{1}{2}n(n - 1) - \frac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \frac{n^2}{n^2 - 2m} \leqslant \frac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \frac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi</tex>. |
}} | }} | ||
+ | |||
==Смотри так же== | ==Смотри так же== | ||
*[[Хроматическое_число_планарного_графа|Хроматическое число планарного графа]] | *[[Хроматическое_число_планарного_графа|Хроматическое число планарного графа]] |
Версия 17:13, 13 января 2016
Содержание
Верхняя оценка длиной максимального нечетного цикла
Лемма (оценка хроматического числа длиной максимального нечётного цикла): |
Пусть — произвольный связный неориентированный граф и — длина максимального простого цикла графа , . Тогда, . |
Доказательство: |
Опишем на графе следующий алгоритм раскраски:
Докажем от противного, что после выполнения описанного алгоритма граф Таким образом в графе будет правильно раскрашен. Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины одного цвета. Пусть — цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа , , .Тогда, .Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то . То есть, вершины лежат на простом цикле длины по крайней мере . Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем . после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из , то есть правильно раскрашен в цвет, следовательно |
Нижняя оценка числом независимости
Определение: |
Подмножество | вершин графа называется независимым, если любые две вершины из не смежны в
Определение: |
Число независимости | графа — и независимо в G
Лемма (нижняя оценка): |
Пусть — произвольный связный неориентированный граф с вершинами .Тогда, . |
Доказательство: |
Пусть, Заметим, что для произвольного множеств вершин окрашенных в соответствующие цвета при правильно покраски графа .Каждое из — независимое множество (поскольку вершины множества покрашены в один цвет при правильной покраски графа , следовательно, они попарно не смежны внутри множества ). , (т.к независимое множество). То есть, , следовательно . |
Верхняя оценка количеством ребер
Лемма (верхняя оценка): |
Пусть — произвольный связный неориентированный граф с ребрами.Тогда, . |
Доказательство: |
Пусть, Тогда, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа . Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет). . |
Нижняя оценка количеством ребер и количеством вершин
Лемма (нижняя оценка Геллера): |
Пусть — произвольный связный неориентированный граф с вершинами и ребрами. Тогда, . |
Доказательство: |
Пусть, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа . . |