Матричный умножитель — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Матричный умножитель)
(Вычисление частичных произведений)
Строка 8: Строка 8:
 
===== Вычисление частичных произведений =====
 
===== Вычисление частичных произведений =====
 
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами <tex>\&</tex> {{---}} конъюнкторами.
 
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами <tex>\&</tex> {{---}} конъюнкторами.
Каждое частичное произведение <tex>(m_i)</tex> {{---}} это результат выполнения <tex>k</tex> логических операции <tex>\&</tex> ( между текущим <tex>i</tex>,где  <tex>i=1..n</tex> разрядом множителя и всеми <tex>k</tex> разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:  
+
Каждое частичное произведение <tex>(m_i)</tex> {{---}} это результат выполнения <tex>k</tex> логических операции <tex>\&</tex> ( между текущим <tex>i</tex>, где  <tex>i=1..n</tex>, разрядом множителя и всеми <tex>k</tex> разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:  
  
 
<tex>m_i = 2^{i - 1} (a \& b_i), (i=1..n)</tex>
 
<tex>m_i = 2^{i - 1} (a \& b_i), (i=1..n)</tex>

Версия 22:22, 19 января 2016

Принцип работы

Умножение в бинарной системе

Умножение в столбик

Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком. Если множимое — [math]k[/math] разрядное, а множитель — [math]n[/math] разрядный, то для формирования произведения требуется вычислить [math]n[/math] частичных произведений и сложить их между собой.

Вычисление частичных произведений

В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами [math]\&[/math] — конъюнкторами. Каждое частичное произведение [math](m_i)[/math] — это результат выполнения [math]k[/math] логических операции [math]\&[/math] ( между текущим [math]i[/math], где [math]i=1..n[/math], разрядом множителя и всеми [math]k[/math] разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:

[math]m_i = 2^{i - 1} (a \& b_i), (i=1..n)[/math]

Суммирование частичных произведений

На этом этапе происходит сложение всех частичных произведений [math] m [/math].

Схема

Схема матричного умножителя

Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке. Формирование частичных произведений осуществляется посредством логических элементов [math]\&[/math]. Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. Разрядность результата — [math]l[/math] определяется разрядностью множителя — [math]n[/math] и множимого — [math]k[/math]:

[math] l=n+k [/math].


Все конъюнкторы работают параллельно. Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора. В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом. Время выполнения операции умножения определяется временем распространения переносов до выходного разряда [math] p8 [/math].

Матричный умножитель

Если внимательно посмотреть на схему матричного умножителя (англ. binary multiplier), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа [math]A[/math] и числа [math]B[/math]. В точках пересечения этих проводников находятся логические элементы [math]\&[/math]. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.

Схемная сложность

Частичные произведения вычисляются за [math]n[/math] шагов. Сложение с вычислением переносов включает [math]n - 1[/math] шаг. Последнее сложение можно выполнить за [math]O(\log n)[/math].

В итоге суммарное время работы:

[math]O(n) + O(n) + O(\log n) = O(n) [/math]

Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.

Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.

Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает [math]O(\log n)[/math].

См. также

Источники информации