Расстояние Хэмминга — различия между версиями
(Привет с матмеха :)) |
Nikitaevg (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Расстояние Хэмминга (Hamming distance | + | '''Расстояние Хэмминга''' (англ. ''Hamming distance'') {{---}} число позиций, в которых различаются соответствующие символы двух строк одинаковой длины. }} |
В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит [[Метрическое пространство#def1 | метрикой]] различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности. | В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит [[Метрическое пространство#def1 | метрикой]] различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности. | ||
− | |||
==Пример== | ==Пример== | ||
Строка 15: | Строка 14: | ||
#<tex>~d(x, y) = 0 \iff x = y</tex> ''(Если расстояние от <tex>x</tex> до <tex>y</tex> равно нулю, то <tex>x</tex> и <tex>y</tex> совпадают (<tex>x = y</tex>))'' | #<tex>~d(x, y) = 0 \iff x = y</tex> ''(Если расстояние от <tex>x</tex> до <tex>y</tex> равно нулю, то <tex>x</tex> и <tex>y</tex> совпадают (<tex>x = y</tex>))'' | ||
#<tex>~d(x,y)=d(y,x)</tex> ''(Объект <tex>x</tex> удален от объекта <tex>y</tex> так же, как объект <tex>y</tex> удален от объекта <tex>x</tex>)'' | #<tex>~d(x,y)=d(y,x)</tex> ''(Объект <tex>x</tex> удален от объекта <tex>y</tex> так же, как объект <tex>y</tex> удален от объекта <tex>x</tex>)'' | ||
− | #<tex>~d(x,y) \ | + | #<tex>~d(x,y) \leqslant d(x,z) + d(z,y)</tex> ''(Расстояние от <tex>x</tex> до <tex>y</tex> всегда меньше или равно расстоянию от <tex>x</tex> до <tex>y</tex> через точку <tex>z</tex>. Это свойство обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.)'' |
== Доказательство неравенства треугольника == | == Доказательство неравенства треугольника == | ||
{{Утверждение | {{Утверждение | ||
− | |statement=<tex>~d(x,y) \ | + | |statement=<tex>~d(x,y) \leqslant d(x,z) + d(z,y)</tex> |
|proof= | |proof= | ||
− | Пусть слова <tex>x</tex> и <tex>y</tex> отличаются в некоторых позициях. Тогда какое бы слово <tex>z</tex> мы ни взяли, оно будет отличаться в каждой из этих позиций по крайне мере от одного из слов <tex>x</tex> и <tex>y</tex>. Следовательно, суммируя в правой части <tex>d(x, z)</tex> и <tex>d(z, y)</tex>, мы обязательно учтем все позиции, в которых различались слова <tex>x</tex> и <tex>y</tex>. Т.е. получается, что <tex>~d(x,y) \ | + | Пусть слова <tex>x</tex> и <tex>y</tex> отличаются в некоторых позициях. Тогда какое бы слово <tex>z</tex> мы ни взяли, оно будет отличаться в каждой из этих позиций по крайне мере от одного из слов <tex>x</tex> и <tex>y</tex>. Следовательно, суммируя в правой части <tex>d(x, z)</tex> и <tex>d(z, y)</tex>, мы обязательно учтем все позиции, в которых различались слова <tex>x</tex> и <tex>y</tex>. Т.е. получается, что <tex>~d(x,y) \leqslant d(x,z) + d(z,y)</tex>. |
}} | }} | ||
Строка 28: | Строка 27: | ||
*[[Избыточное кодирование, код Хэмминга]] | *[[Избыточное кодирование, код Хэмминга]] | ||
− | == | + | == Источники информации == |
*[http://ru.wikipedia.org/wiki/Расстояние_Хэмминга Расстояние Хэмминга — Википедия] | *[http://ru.wikipedia.org/wiki/Расстояние_Хэмминга Расстояние Хэмминга — Википедия] | ||
*[http://en.wikipedia.org/wiki/Hamming_distance Hamming distance - Wikipedia] | *[http://en.wikipedia.org/wiki/Hamming_distance Hamming distance - Wikipedia] |
Версия 10:42, 20 января 2016
Определение: |
Расстояние Хэмминга (англ. Hamming distance) — число позиций, в которых различаются соответствующие символы двух строк одинаковой длины. |
В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Содержание
Пример
- d(1011101, 1001001)=2
- d(1538124, 1523156)=4
- d(hill, holl)=1
Свойства
Расстояние Хэмминга обладает свойствами метрики, так как удовлетворяет ее определению.
- (Если расстояние от до равно нулю, то и совпадают ( ))
- (Объект удален от объекта так же, как объект удален от объекта )
- (Расстояние от до всегда меньше или равно расстоянию от до через точку . Это свойство обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.)
Доказательство неравенства треугольника
Утверждение: |
Пусть слова | и отличаются в некоторых позициях. Тогда какое бы слово мы ни взяли, оно будет отличаться в каждой из этих позиций по крайне мере от одного из слов и . Следовательно, суммируя в правой части и , мы обязательно учтем все позиции, в которых различались слова и . Т.е. получается, что .