Поток минимальной стоимости — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение задачи)
Строка 1: Строка 1:
 +
==Поток минимальной стоимости==
 +
{{Определение
 +
|definition='''Стоимость потока'''. Дана сеть <tex>G(V,E)</tex>. <tex>S, T \in V</tex> {{---}} источник и сток. <tex>\forall (u,v) \in E</tex> <tex>\exists c(u, v), f(u,v)</tex> {{---}} стоимость пересылки единицы потока и пропускная способность. Тогда '''общая стоимость потока''' из <tex>S</tex> в <tex>T</tex>:
 +
:<tex>p(u,v) = \sum_{u,v \in V, f(u,v)>0} c(u,v) \cdot f(u,v)</tex>
 +
}}
 +
===Свойства стоимости===
 +
 +
 +
==Задача о потоке минимальной стоимости==
 +
===Формулировка===
 
{{Задача
 
{{Задача
|definition = Дано число <tex>f_0</tex> и транспортная сеть <tex>\,G(V,E)</tex> с источником <tex>s \in V</tex> и стоком <tex>t \in V</tex>, где ребра <tex>(u,v) \in E</tex> имеют пропускную способность <tex>\,c(u,v)</tex> и цену <tex>\,p(u,v)</tex>.
+
|definition = Дана сеть <tex>G(V,E)</tex>. <tex>S, T \in V</tex> {{---}} источник и сток. <tex>\forall (u,v) \in E</tex> <tex>\exists c(u, v), f(u,v)</tex> {{---}} стоимость пересылки единицы потока и пропускная способность. Требуется найти максимальный поток, суммарная стоимость которого минимальна.
Требуется найти поток <tex>f(u, v)</tex>:
+
}}
  
:<tex>p(f) = \sum_{u,v \in V, f(u,v)>0} p(u,v) \cdot f(u,v) \rightarrow min </tex>.
 
:<tex>|f| = \sum_{u,v \in V, f(u,v)>0} f(u,v) = f_0</tex>
 
}}
 
  
== Алгоритмы решения ==
+
=== Алгоритмы решения ===
 
*Найти любой поток величины <tex>f_0</tex>, после чего избавиться от всех циклов отрицательной стоимости в остаточном графе. Чтобы избавиться от цикла, надо пустить по нему максимально возможный поток. Циклы ищутся алгоритмом [[Алгоритм Форда-Беллмана|Форда-Беллмана]].
 
*Найти любой поток величины <tex>f_0</tex>, после чего избавиться от всех циклов отрицательной стоимости в остаточном графе. Чтобы избавиться от цикла, надо пустить по нему максимально возможный поток. Циклы ищутся алгоритмом [[Алгоритм Форда-Беллмана|Форда-Беллмана]].
 
*[[Поиск_потока_минимальной_стоимости_методом_дополнения_вдоль_путей_минимальной_стоимости|Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости]].
 
*[[Поиск_потока_минимальной_стоимости_методом_дополнения_вдоль_путей_минимальной_стоимости|Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости]].

Версия 02:06, 24 января 2016

Поток минимальной стоимости

Определение:
Стоимость потока. Дана сеть [math]G(V,E)[/math]. [math]S, T \in V[/math] — источник и сток. [math]\forall (u,v) \in E[/math] [math]\exists c(u, v), f(u,v)[/math] — стоимость пересылки единицы потока и пропускная способность. Тогда общая стоимость потока из [math]S[/math] в [math]T[/math]:
[math]p(u,v) = \sum_{u,v \in V, f(u,v)\gt 0} c(u,v) \cdot f(u,v)[/math]

Свойства стоимости

Задача о потоке минимальной стоимости

Формулировка

Задача:
Дана сеть [math]G(V,E)[/math]. [math]S, T \in V[/math] — источник и сток. [math]\forall (u,v) \in E[/math] [math]\exists c(u, v), f(u,v)[/math] — стоимость пересылки единицы потока и пропускная способность. Требуется найти максимальный поток, суммарная стоимость которого минимальна.


Алгоритмы решения

Ссылки

Литература

  • Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)