Поток минимальной стоимости — различия между версиями
(→Литература) |
(→Источники информации) |
||
Строка 35: | Строка 35: | ||
*[http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/min-cost-max-flow-2009 Визуализатор алгоритма нахождения максимального потока минимальной стоимости] | *[http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/min-cost-max-flow-2009 Визуализатор алгоритма нахождения максимального потока минимальной стоимости] | ||
*[http://habrahabr.ru/blogs/algorithm/61884/ Хабрахабр - Максимальный поток минимальной стоимости] | *[http://habrahabr.ru/blogs/algorithm/61884/ Хабрахабр - Максимальный поток минимальной стоимости] | ||
+ | * ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.) | ||
+ | |||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория: Задача о потоке минимальной стоимости]] | [[Категория: Задача о потоке минимальной стоимости]] |
Версия 14:02, 24 января 2016
Содержание
Задача о потоке минимальной стоимости
Определение: |
Пусть дана сеть | . — источник и сток. — стоимость пересылки единицы потока и пропускная способность. Тогда общая стоимость потока из в :
Свойства стоимости
- Поток не может превысить пропускную способность.
- Поток из в должен быть противоположным потоку из в .
- Сохранение потока. Для каждой вершины, сумма входящего и исходящего потоков равно 0.
Задача: |
Дана сеть | . — источник и сток. — стоимость пересылки единицы потока и пропускная способность. Требуется найти максимальный поток, суммарная стоимость которого минимальна.
Алгоритмы решения
- Воспользуемся леммой об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети.
- Найдем любой поток величины .
- При помощи Форда-Беллмана найдем отрицательные циклы в остаточной сети.
- Избавимся от всех найденных циклов, для этого, пустим по ним максимально возможный поток.
- Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости.
- Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма).
См. также
- Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости
- Теорема Форда-Фалкерсона о потоке минимальной стоимости
- Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети
Источники информации
- Википедия - Поток минимальной стоимости
- Визуализатор алгоритма нахождения максимального потока минимальной стоимости
- Хабрахабр - Максимальный поток минимальной стоимости
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)