Поток минимальной стоимости — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(См. также)
(Алгоритмы решения)
Строка 17: Строка 17:
 
}}
 
}}
  
=== Алгоритмы решения ===
+
== Алгоритмы решения ==
 
* Воспользуемся [[Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети|леммой об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети]].
 
* Воспользуемся [[Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети|леммой об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети]].
 
** Найдем любой поток величины <tex>f_0</tex>.
 
** Найдем любой поток величины <tex>f_0</tex>.
 
** При помощи [[Алгоритм Форда-Беллмана|Форда-Беллмана]] найдем отрицательные циклы в остаточной сети.
 
** При помощи [[Алгоритм Форда-Беллмана|Форда-Беллмана]] найдем отрицательные циклы в остаточной сети.
 
** Избавимся от всех найденных циклов, для этого, пустим по ним максимально возможный поток.
 
** Избавимся от всех найденных циклов, для этого, пустим по ним максимально возможный поток.
 
+
===Метод дополнения потока вдоль путей минимальной стоимости===
*[[Поиск_потока_минимальной_стоимости_методом_дополнения_вдоль_путей_минимальной_стоимости|Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости]].
+
[[Поиск_потока_минимальной_стоимости_методом_дополнения_вдоль_путей_минимальной_стоимости|Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости]].
*[[Использование_потенциалов_Джонсона_при_поиске_потока_минимальной_стоимости|Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма)]].
+
===Использование потенциалов Джонсона===
 +
[[Использование_потенциалов_Джонсона_при_поиске_потока_минимальной_стоимости|Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма)]].
  
 
== См. также ==
 
== См. также ==

Версия 14:08, 24 января 2016

Задача о потоке минимальной стоимости

Определение:
Пусть дана сеть [math]G(V,E)[/math]. [math]S, T \in V[/math] — источник и сток. [math]\forall (u,v) \in E[/math] [math]\exists c(u, v), f(u,v)[/math] — стоимость пересылки единицы потока и пропускная способность. Тогда общая стоимость потока из [math]S[/math] в [math]T[/math]:
[math]p(u,v) = \sum\limits_{u,v \in V, f(u,v)\gt 0} c(u,v) \cdot f(u,v)[/math]

Свойства стоимости

  • Поток не может превысить пропускную способность.
[math]f(u,v) \leqslant c(u,v)[/math]
  • Поток из [math]u[/math] в [math]v[/math] должен быть противоположным потоку из [math]v[/math] в [math]u[/math].
[math]f(u, v)=-f(v, u)[/math]
  • Сохранение потока. Для каждой вершины, сумма входящего и исходящего потоков равно 0.
[math] \sum\limits_{w \in V} f(u,w) = 0[/math]


Задача:
Дана сеть [math]G(V,E)[/math]. [math]S, T \in V[/math] — источник и сток. [math]\forall (u,v) \in E[/math] [math]\exists c(u, v), f(u,v)[/math] — стоимость пересылки единицы потока и пропускная способность. Требуется найти максимальный поток, суммарная стоимость которого минимальна.


Алгоритмы решения

Метод дополнения потока вдоль путей минимальной стоимости

Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости.

Использование потенциалов Джонсона

Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма).

См. также

Источники информации