Поток минимальной стоимости — различия между версиями
(→Использование потенциалов Джонсона) |
(→Источники информации) |
||
Строка 45: | Строка 45: | ||
== Источники информации == | == Источники информации == | ||
− | *[http://ru.wikipedia.org/wiki/Поток_минимальной_стоимости Википедия - Поток минимальной стоимости] | + | *[http://ru.wikipedia.org/wiki/Поток_минимальной_стоимости Википедия {{{---}}} Поток минимальной стоимости] |
*[http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/min-cost-max-flow-2009 Визуализатор алгоритма нахождения максимального потока минимальной стоимости] | *[http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/min-cost-max-flow-2009 Визуализатор алгоритма нахождения максимального потока минимальной стоимости] | ||
− | *[http://habrahabr.ru/blogs/algorithm/61884/ Хабрахабр - Максимальный поток минимальной стоимости] | + | *[http://habrahabr.ru/blogs/algorithm/61884/ Хабрахабр {{{---}}} Максимальный поток минимальной стоимости] |
− | * ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. | + | * ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. {{{---}}} М.:Издательский дом "Вильямс", 2010. {{{---}}} 1296 с.: ил. {{{---}}} Парал. тит. англ. {{{---}}} ISBN 978-5-8459-0857-5 (рус.) |
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория: Задача о потоке минимальной стоимости]] | [[Категория: Задача о потоке минимальной стоимости]] |
Версия 14:57, 24 января 2016
Содержание
Задача о потоке минимальной стоимости
Определение: |
Пусть дана сеть | . — источник и сток. — стоимость пересылки единицы потока и пропускная способность. Тогда общая стоимость потока из в :
Свойства стоимости
- Поток не может превысить пропускную способность.
- Поток из в должен быть противоположным потоку из в .
- Сохранение потока. Для каждой вершины, сумма входящего и исходящего потоков равно .
Задача: |
Дана сеть | . — источник и сток. — стоимость пересылки единицы потока и пропускная способность. Требуется найти максимальный поток, суммарная стоимость которого минимальна.
Алгоритмы решения
Метод устранения отрицательных циклов в остаточной сети
Воспользуемся леммой об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети. Получим следующий алгоритм:
Алгоритм
- Начало.
- Шаг 1. Требуется найти максимальный поток минимальной стоимости.
- Шаг 2. Для каждого ребра зададим поток равный .
- Шаг 3. Построим остаточную сеть .
- Шаг 4. При помощи алгоритма Форда-Беллмана найдем отрицательные циклы в остаточной сети. Если нет - перейдем к шагу 7.
- Шаг 5. Выберем один из отрицательных циклов.
- Шаг 6. Избавимся от отрицательного цикла, для этого пустим по нему максимально возможный поток. Перейдем к шагу 5.
- Шаг 7. Отрицательных циклов восточной сети нет, значит, максимальный поток минимальной стоимости найден.
- Конец.
Ассимптотика
Алгоритм Форда-Беллмана работает за
. Нахождение максимального потока и улучшение цикла работает за . В итоге имеем .Метод дополнения потока вдоль путей минимальной стоимости
Использование потенциалов Джонсона
См. также
- Сведение задачи о назначениях к задаче о потоке минимальной стоимости
- Венгерский алгоритм решения задачи о назначениях
Источники информации
- Википедия {{{---}}} Поток минимальной стоимости
- Визуализатор алгоритма нахождения максимального потока минимальной стоимости
- Хабрахабр {{{---}}} Максимальный поток минимальной стоимости
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. {{{---}}} М.:Издательский дом "Вильямс", 2010. {{{---}}} 1296 с.: ил. {{{---}}} Парал. тит. англ. {{{---}}} ISBN 978-5-8459-0857-5 (рус.)