Участник:Qtr — различия между версиями
Qtr (обсуждение | вклад) (→Описание) |
Qtr (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Алгоритм Джонсона''' находит кратчайшие пути между всеми парами вершин во взвешенном ориентированном графе с любыми весами ребер, но не имеющем отрицательных циклов. | + | '''Алгоритм Джонсона''' находит кратчайшие пути между всеми парами вершин (англ. ''All Pairs Shortest Path'') во взвешенном ориентированном графе с любыми весами ребер, но не имеющем отрицательных циклов. |
== Алгоритм == | == Алгоритм == | ||
Строка 5: | Строка 5: | ||
=== Описание === | === Описание === | ||
− | Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин в течение времени <tex> O(V^2\log(V) + VE) </tex>. Для разреженных графов этот алгоритм ведет себя асимптотически быстрее алгоритма Флойда. Этот алгоритм либо возвращает матрицу кратчайших расстояний между всеми парами вершин, либо сообщение о том, что в графе существует цикл отрицательной длины. | + | Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин в течение времени <tex> O(V^2\log(V) + VE) </tex>. Для разреженных графов этот алгоритм ведет себя асимптотически быстрее [[Алгоритм Флойда|алгоритма Флойда]]. Этот алгоритм либо возвращает матрицу кратчайших расстояний между всеми парами вершин, либо сообщение о том, что в графе существует цикл отрицательной длины. |
В этом алгоритме используется метод '''изменения веса''' (англ. ''reweighting''). Суть его заключается в том, что для заданного графа <tex> G </tex> строится новая весовая функция <tex> \omega_\varphi </tex>, неотрицательная для всех ребер графа <tex> G </tex> и сохраняющая кратчайшие пути. Такая весовая функция строится с помощью так называемой '''потенциальной''' функции. | В этом алгоритме используется метод '''изменения веса''' (англ. ''reweighting''). Суть его заключается в том, что для заданного графа <tex> G </tex> строится новая весовая функция <tex> \omega_\varphi </tex>, неотрицательная для всех ребер графа <tex> G </tex> и сохраняющая кратчайшие пути. Такая весовая функция строится с помощью так называемой '''потенциальной''' функции. | ||
Строка 11: | Строка 11: | ||
Пусть <tex> \varphi : V \rightarrow \mathbb R </tex> — произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет <tex> \omega_\varphi(u, v) = \omega(u, v) + \varphi(u) - \varphi(v) </tex>. | Пусть <tex> \varphi : V \rightarrow \mathbb R </tex> — произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет <tex> \omega_\varphi(u, v) = \omega(u, v) + \varphi(u) - \varphi(v) </tex>. | ||
− | Такая потенциальная функция строится при помощи добавлении фиктивной вершины в <tex> G </tex>, из которой проведены ребра нулевого веса во все остальные вершины и запуском алгоритма Форда | + | Такая потенциальная функция строится при помощи добавлении фиктивной вершины в <tex> G </tex>, из которой проведены ребра нулевого веса во все остальные вершины и запуском [[Алгоритм Форда-Беллмана|алгоритма Форда — Беллмана]] из нее. На этом же этапе мы сможем обнаружить наличие отрицательного цикла в графе. |
− | Теперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить алгоритм Дейкстры из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин. | + | Теперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить [[Алгоритм Дейкстры|алгоритм Дейкстры]] из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин. |
=== Сохранение кратчайших путей === | === Сохранение кратчайших путей === | ||
Строка 23: | Строка 23: | ||
|proof= | |proof= | ||
− | :Рассмотрим путь <tex>P: \;u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow | + | :Рассмотрим путь <tex>P: \;u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k </tex> |
− | :Его вес с новой весовой функцией равен <tex>\omega_\varphi(P) = \omega_\varphi(u_0u_1) + \omega_\varphi(u_1u_2) + | + | :Его вес с новой весовой функцией равен <tex>\omega_\varphi(P) = \omega_\varphi(u_0u_1) + \omega_\varphi(u_1u_2) + \ldots + \omega_\varphi(u_{k-1}u_k) </tex>. |
− | :Вставим определение функции <tex> \omega_\varphi : \omega_\varphi(P) = \varphi(u_0) + \omega(u_0u_1) - \varphi(u_1) + | + | :Вставим определение функции <tex> \omega_\varphi : \omega_\varphi(P) = \varphi(u_0) + \omega(u_0u_1) - \varphi(u_1) + \ldots + \varphi(u_{k-1}) + \omega(u_{k-1}u_k) - \varphi(u_k) </tex> |
:Заметим, что потенциалы все промежуточных вершин в пути сократятся. <tex> \omega_\varphi(P) = \varphi(u_0) + \omega(P) - \varphi(u_k)</tex> | :Заметим, что потенциалы все промежуточных вершин в пути сократятся. <tex> \omega_\varphi(P) = \varphi(u_0) + \omega(P) - \varphi(u_k)</tex> | ||
Строка 48: | Строка 48: | ||
|proof= | |proof= | ||
− | <tex>\Leftarrow </tex>: Рассмотрим произвольный <tex>C</tex> | + | <tex>\Leftarrow </tex>: Рассмотрим произвольный <tex>C</tex> — цикл в графе <tex>G</tex> |
:По лемме, его вес равен <tex> \omega(C) = \omega_\varphi(C) - \varphi(u_0) - \varphi(u_0) = \omega_\varphi(C) \geqslant 0</tex> | :По лемме, его вес равен <tex> \omega(C) = \omega_\varphi(C) - \varphi(u_0) - \varphi(u_0) = \omega_\varphi(C) \geqslant 0</tex> | ||
Строка 67: | Строка 67: | ||
Предварительно построим граф <tex>G' = (V',\;E')</tex>, где <tex>V' = V \cup \{s\}</tex>, <tex>s \not\in V</tex>, а <tex>E' = E \cup \{(s,\;v): \omega(s, v) = 0,\ v \in V \}</tex> | Предварительно построим граф <tex>G' = (V',\;E')</tex>, где <tex>V' = V \cup \{s\}</tex>, <tex>s \not\in V</tex>, а <tex>E' = E \cup \{(s,\;v): \omega(s, v) = 0,\ v \in V \}</tex> | ||
− | + | '''function''' Johnson(G): '''int[][]''' | |
− | + | '''if''' Bellman_Ford<tex>(G',\;\omega,\;s)</tex> == FALSE | |
− | + | '''then''' print "Входной граф содержит цикл с отрицательным весом" | |
− | + | '''else''' '''for''' <tex>v \in V'</tex> | |
<tex>\varphi(v)</tex> = <tex>\delta(s,\;v)</tex> <font color = green>//<tex>\delta(s,\;v)</tex> вычислено алгоритмом Беллмана — Форда</font> | <tex>\varphi(v)</tex> = <tex>\delta(s,\;v)</tex> <font color = green>//<tex>\delta(s,\;v)</tex> вычислено алгоритмом Беллмана — Форда</font> | ||
− | + | '''for''' <tex>(u,\;v) \in E'</tex> | |
− | + | <tex>\omega_\varphi(u,\;v)</tex> = <tex> \omega(u,\;v) + \varphi(u) - \varphi(v)</tex> | |
− | + | '''for''' <tex>u \in V</tex> | |
− | + | Dijkstra<tex>(G,\;\omega_\varphi,\;u)</tex> | |
− | + | '''for''' <tex>v \in V</tex> | |
− | + | <tex>d_{uv} \leftarrow \delta_\varphi(u,\;v) + \varphi(v) - \varphi(u)</tex> | |
− | + | '''return''' <tex>d</tex> | |
− | Итого, в начале алгоритм Форда | + | Итого, в начале алгоритм Форда — Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл. |
Затем из каждой вершины запускается алгоритм Дейкстры для составления искомой матрицы. Так как все веса ребер теперь неотрицательны, алгоритм Дейкстры будет работать корректно. А поскольку перевзвешивание таково, что кратчайшие пути относительно обеих весовых функций совпадают, алгоритм Джонсона в итоге корректно найдет все кратчайшие пути между всеми парами вершин. | Затем из каждой вершины запускается алгоритм Дейкстры для составления искомой матрицы. Так как все веса ребер теперь неотрицательны, алгоритм Дейкстры будет работать корректно. А поскольку перевзвешивание таково, что кратчайшие пути относительно обеих весовых функций совпадают, алгоритм Джонсона в итоге корректно найдет все кратчайшие пути между всеми парами вершин. | ||
Строка 91: | Строка 91: | ||
* [[Алгоритм Форда-Беллмана]] | * [[Алгоритм Форда-Беллмана]] | ||
* [[Алгоритм Флойда]] | * [[Алгоритм Флойда]] | ||
− | |||
== Источники информации == | == Источники информации == | ||
* ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ. 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | * ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ. 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | ||
+ | * [http://rain.ifmo.ru/cat/view.php/vis/graph-paths/johnson-2001 Визуализатор алгоритма] | ||
+ | |||
+ | [[Категория: Алгоритмы и структуры данных]] | ||
+ | [[Категория: Кратчайшие пути в графах ]] |
Версия 22:50, 25 января 2016
Алгоритм Джонсона находит кратчайшие пути между всеми парами вершин (англ. All Pairs Shortest Path) во взвешенном ориентированном графе с любыми весами ребер, но не имеющем отрицательных циклов.
Содержание
Алгоритм
Описание
Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин в течение времени алгоритма Флойда. Этот алгоритм либо возвращает матрицу кратчайших расстояний между всеми парами вершин, либо сообщение о том, что в графе существует цикл отрицательной длины.
. Для разреженных графов этот алгоритм ведет себя асимптотически быстрееВ этом алгоритме используется метод изменения веса (англ. reweighting). Суть его заключается в том, что для заданного графа
строится новая весовая функция , неотрицательная для всех ребер графа и сохраняющая кратчайшие пути. Такая весовая функция строится с помощью так называемой потенциальной функции.Пусть
— произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет .Такая потенциальная функция строится при помощи добавлении фиктивной вершины в алгоритма Форда — Беллмана из нее. На этом же этапе мы сможем обнаружить наличие отрицательного цикла в графе.
, из которой проведены ребра нулевого веса во все остальные вершины и запускомТеперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить алгоритм Дейкстры из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин.
Сохранение кратчайших путей
Утверждается, что если какой-то путь
был кратчайшим относительно весовой функции , то он будет кратчайшим и относительно новой весовой функции .Лемма: |
Пусть — два пути и Тогда |
Доказательство: |
|
Теорема о существовании потенциальной функции
Теорема: |
В графе нет отрицательных циклов существует потенциальная функция |
Доказательство: |
: Рассмотрим произвольный — цикл в графе
: Добавим фиктивную вершину в граф, а также ребра весом для всех .
|
Псевдокод
Предварительно построим граф
, где , , аfunction Johnson(G): int[][] if Bellman_Ford== FALSE then print "Входной граф содержит цикл с отрицательным весом" else for = // вычислено алгоритмом Беллмана — Форда for = for Dijkstra for return
Итого, в начале алгоритм Форда — Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл.
Затем из каждой вершины запускается алгоритм Дейкстры для составления искомой матрицы. Так как все веса ребер теперь неотрицательны, алгоритм Дейкстры будет работать корректно. А поскольку перевзвешивание таково, что кратчайшие пути относительно обеих весовых функций совпадают, алгоритм Джонсона в итоге корректно найдет все кратчайшие пути между всеми парами вершин.
Сложность
Алгоритм Джонсона работает за алгоритма Дейкстры. Если в алгоритме Дейкстры неубывающая очередь с приоритетами реализована в виде фибоначчиевой кучи, то время работы алгоритма Джонсона есть . В случае реализации очереди с приоритетами в виде двоичной кучи время работы равно .
, где — время работыСм. также
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.
- Визуализатор алгоритма