Мост, эквивалентные определения — различия между версиями
м |
Maksnov (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | '''Мост''' графа <tex>G</tex> {{---}} ребро, соединяющее две компоненты реберной двусвязности <tex>G</tex>. <tex>(1)</tex> | |
}} | }} | ||
Строка 15: | Строка 15: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | Мост графа <tex>G</tex> {{---}} ребро, при удалении которого граф <tex>G</tex> становится несвязным. <tex>(2)</tex> | |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | Ребро <tex>x</tex> является мостом графа <tex>G</tex>, если в <tex>G</tex> существуют такие вершины <tex>u</tex> и <tex>v</tex>, что любой простой путь между этими вершинами проходит через ребро <tex>x.</tex> <tex>(3)</tex> | |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | Ребро <tex>x</tex> является мостом графа <tex>G</tex>, если существует разбиение множества вершин <tex>V</tex> на такие множества <tex>U</tex> и <tex>W</tex>, что <tex>\forall u \in U</tex> и <tex>\forall w \in W</tex> ребро <tex>x</tex> принадлежит любому простому пути <tex>u \rightsquigarrow w</tex>. <tex>(4)</tex> | |
}} | }} | ||
Строка 42: | Строка 42: | ||
}} | }} | ||
− | == | + | ==Источники информации== |
* Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.) | * Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.) | ||
Версия 22:14, 27 января 2016
Пусть
— связный граф.Определение: |
Мост графа | — ребро, соединяющее две компоненты реберной двусвязности .
Пример графа с тремя мостами
Эквивалентные определения
Определение: |
Мост графа | — ребро, при удалении которого граф становится несвязным.
Определение: |
Ребро | является мостом графа , если в существуют такие вершины и , что любой простой путь между этими вершинами проходит через ребро
Определение: |
Ребро | является мостом графа , если существует разбиение множества вершин на такие множества и , что и ребро принадлежит любому простому пути .
Теорема: |
Определения (1), (2), (3) и (4) эквивалентны. |
Доказательство: |
Пусть ребро соединяет вершины и . Пусть граф — связный. Тогда между вершинами и существует еще один путь, т.е. между вершинами и существуют два реберно-непересекающихся пути. Но тогда ребро не является мостом графа . Противоречие. В условиях определения (4) пусть существует такие вершины и , что между ними существует простой путь . Но тогда граф — связный. Противоречие. Возьмем и . Тогда простой путь содержит ребро . Утверждение доказано Тогда между вершинами Пусть . Пусть ребро не является мостом по определению (1). и есть простой путь . Составим такой путь , что . Сделаем путь простым. Получим простой путь , не проходящий по ребру . Противоречие. |
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)