Теорема Холла — различия между версиями
Maksnov (обсуждение | вклад) |
Maksnov (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
==Определения== | ==Определения== | ||
− | Пусть <tex>G(V,E)</tex> {{---}} двудольный граф. <tex>L</tex> {{---}} множество вершин первой доли. <tex>R</tex> {{---}} множество вершин правой доли. | + | Пусть <tex>G(V,E)</tex> {{---}} [[Основные_определения_теории_графов#Двудольный_граф |двудольный граф]] . <tex>L</tex> {{---}} множество вершин первой доли. <tex>R</tex> {{---}} множество вершин правой доли. |
{{Определение | {{Определение | ||
|id=def1. | |id=def1. | ||
Строка 11: | Строка 11: | ||
|id=def2. | |id=def2. | ||
|nеat=1 | |nеat=1 | ||
− | |definition=Пусть <tex>X \subset V </tex>. '''Множeство соседей''' <tex>X</tex> ''(англ. neighborhood)'' определим формулой: <tex>N(X)= \{ y \in V | + | |definition=Пусть <tex>X \subset V </tex>. '''Множeство соседей''' <tex>X</tex> ''(англ. neighborhood)'' определим формулой: <tex>N(X)= \{ y \in V \mid (x,y) \in E , x \in X\}</tex> |
}} | }} | ||
Строка 21: | Строка 21: | ||
|proof= | |proof= | ||
<tex>\Rightarrow</tex> <br> | <tex>\Rightarrow</tex> <br> | ||
− | Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset L </tex> выполнено <tex>|A| \leqslant |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же | + | Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset L </tex> выполнено <tex>|A| \leqslant |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же ''соседей'' ("соседи по парасочетанию"). |
<tex>\Leftarrow</tex> <br> | <tex>\Leftarrow</tex> <br> |
Версия 01:11, 28 января 2016
Определения
Пусть двудольный граф . — множество вершин первой доли. — множество вершин правой доли.
—Определение: |
Полным (совершенным) паросочетанием (англ. perfect matching) называется паросочетание, в которое входят все вершины. |
Определение: |
Пусть | . Множeство соседей (англ. neighborhood) определим формулой:
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого выполнено . |
Доказательство: |
База индукции Вершина из соединена хотя бы с одной вершиной из . Следовательно база верна.Индукционный переход Пусть после шагов построено паросочетание . Докажем, что в можно добавить вершину из , не насыщенную паросочетанием . Рассмотрим множество вершин — все вершины, достижимые из , если можно ходить из в только по ребрам из , а из в по любым ребрам из . Тогда в найдется вершина из , не насыщенная паросочетанием , иначе, если рассмотреть вершины (вершины из принадлежащие ), то для них не будет выполнено условие: . Тогда существует путь из в , который будет удлиняющим для паросочетания (т.к из в мы проходили по ребрам паросочетания ). Увеличив паросочетание вдоль этого пути, получаем искомое паросочетание. Следовательно предположение индукции верно. |
Пояснения к доказательству
Пусть было построено паросочетание размером
(синие ребра).Добавляем вершину с номером
.Во множество
вошли вершины с номерами , , , , , .Ненасыщенная вершина из правой доли всегда найдется (в примере вершина с номером
), т.к иначе получаем противоречие:- В входят только насыщенные вершины.
- В по крайней мере вершин ("соседи" по паросочетанию для каждой вершины из и ещё одна вершина, которую пытаемся добавить).
Цепь
является удлиняющей для текущего паросочетания.Увеличив текущее парасочетание вдоль этой цепи, мы насытим вершину с номером 4.
Примечания
Иногда теорему называют теоремой о свадьбах.
Также теорема обобщается на граф, имеющий произвольное множество долей.