Произвольно вычерчиваемые из заданной вершины графы — различия между версиями
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | [[Основные определения теории графов|Граф]] называется '''произвольно вычерчиваемым из вершины <tex>v</tex>''' (англ. ''Arbitrarily traceable graph''), если любая цепь с началом в вершине <tex>v</tex> может быть продолжена до эйлерового цикла графа <tex>G</tex>. <br>Любой произвольно вычерчиваемый из вершины <tex>v</tex> граф является [[Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов|эйлеровым графом]]. | + | [[Основные определения теории графов|Граф]] называется '''произвольно вычерчиваемым из вершины <tex>v</tex>''' (англ. ''Arbitrarily traceable graph''), если любая цепь с началом в вершине <tex>v</tex> может быть продолжена до эйлерового цикла графа <tex>G</tex>. }} |
+ | <br>Любой произвольно вычерчиваемый из вершины <tex>v</tex> граф является [[Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов|эйлеровым графом]]. | ||
{{Теорема | {{Теорема | ||
Строка 8: | Строка 9: | ||
|proof= | |proof= | ||
[[Файл:ATG_part1.jpg|200px|right]] | [[Файл:ATG_part1.jpg|200px|right]] | ||
− | + | <tex>\Rightarrow</tex> Пусть в <tex>G</tex> <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br> | |
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). При удалении цикла все степени вершин остались четными, потому что каждая вершина содержит четное количество ребер цикла, и следовательно <tex>G_1</tex> {{---}} эйлеров. Тогда в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти, так как из вершины <tex>v</tex> больше нет не посещенных ребер <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>. | Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). При удалении цикла все степени вершин остались четными, потому что каждая вершина содержит четное количество ребер цикла, и следовательно <tex>G_1</tex> {{---}} эйлеров. Тогда в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти, так как из вершины <tex>v</tex> больше нет не посещенных ребер <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>. | ||
[[Файл:ATG_part2.jpg|200px|left]] | [[Файл:ATG_part2.jpg|200px|left]] | ||
− | + | <tex>\Leftarrow</tex> Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br> | |
Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможны 2 случая: | Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможны 2 случая: | ||
Версия 19:14, 28 января 2016
Определение: |
Граф называется произвольно вычерчиваемым из вершины (англ. Arbitrarily traceable graph), если любая цепь с началом в вершине может быть продолжена до эйлерового цикла графа . |
Любой произвольно вычерчиваемый из вершины граф является эйлеровым графом.
Теорема: |
Эйлеров граф , содержащий хотя бы одно ребро, является произвольно вычерчиваемым из вершины вершина принадлежит всем циклам графа . |
Доказательство: |
1. если Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам В . единственная компонента связности, содержащая ребра. При удалении их количество не могло увеличится, иначе должен быть цикл, не содержащий (смотри рисунок). Значит в единственная компонента связности содержащая ребра, причем либо полуэйлеров, либо эйлеров в эйлерова цепь эйлеров цикл в графе . |
Строение
Опираясь на теорему опишем строение всех графов, произвольно вычерчиваемых из вершины
Возьмем произвольный лес , не содержащий вершину . Каждую вершину нечетной степени соединим некоторым нечетным числом кратных ребер с , а каждую вершину четной степени четным числом кратных ребер с (не исключая 0), причем каждую изолированную вершину обязательно соединим с .
Полученный граф :
- Связен;
- Имеет только вершины четной степени;
- Является произвольно вычерчиваемым из , как эйлеров граф, у которого принадлежит всем циклам.
Теперь докажем, почему таким образом можно получить все графы, произвольно вычерчиваемые из вершины
. Пусть какой-то такой граф нельзя получить методом описанным выше. Тогда уберем все ребра из вершины и посмотрим на граф, который остался. Он не является лесом, иначе мы могли бы получить этот граф нашим методом. Но если он не является лесом, то в нем есть хотя бы один цикл, который не содержит . А по теореме о произвольно вычерчиваемымых из вершины графах такого быть не может. Следовательно наше предположение ошибочно.Источники
- Асанов М., Баранский В., Расин В. Дискретная математика: Графы, матроиды, алгоритмы., Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5