Произвольно вычерчиваемые из заданной вершины графы — различия между версиями
м |
м |
||
Строка 15: | Строка 15: | ||
Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможны 2 случая: | Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможны 2 случая: | ||
− | 1. Если <tex>v = w</tex>, то <tex>P</tex> {{---}} цикл, значит степени всех вершин в <tex>G_1</tex> остались четными <tex>\Rightarrow</tex> <tex>G_1</tex> {{---}} эйлеров.<br> | + | # 1. Если <tex>v = w</tex>, то <tex>P</tex> {{---}} цикл, значит степени всех вершин в <tex>G_1</tex> остались четными <tex>\Rightarrow</tex> <tex>G_1</tex> {{---}} эйлеров.<br> |
− | 2. если <tex>v \neq w</tex>, то так как <tex>G</tex> эйлеров граф <tex>\exists</tex> эйлеров путь <tex>(w,v) \in G_1</tex>. | + | # 2. если <tex>v \neq w</tex>, то так как <tex>G</tex> эйлеров граф <tex>\exists</tex> эйлеров путь <tex>(w,v) \in G_1</tex>. |
Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам <tex>G_1</tex>. | Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам <tex>G_1</tex>. | ||
Строка 26: | Строка 26: | ||
[[Файл:ATGexample.jpg|right|300px]] | [[Файл:ATGexample.jpg|right|300px]] | ||
Опираясь на теорему опишем строение всех графов, произвольно вычерчиваемых из вершины <tex>v</tex>. <br> | Опираясь на теорему опишем строение всех графов, произвольно вычерчиваемых из вершины <tex>v</tex>. <br> | ||
− | Возьмем произвольный [[Дерево, эквивалентные определения|лес]] <tex>H</tex>, не содержащий вершину <tex>v</tex>. Каждую вершину нечетной степени соединим некоторым нечетным числом кратных ребер с <tex>v</tex>, а каждую вершину четной степени <tex>-</tex> четным числом кратных ребер с <tex>v</tex> (не исключая 0), причем каждую изолированную вершину обязательно соединим с <tex>v</tex>.<br> | + | Возьмем произвольный [[Дерево, эквивалентные определения|лес]] <tex>H</tex>, не содержащий вершину <tex>v</tex>. Каждую вершину нечетной степени соединим некоторым нечетным числом кратных ребер с <tex>v</tex>, а каждую вершину четной степени <tex>-</tex> четным числом кратных ребер с <tex>v</tex> (не исключая <tex>0</tex>), причем каждую изолированную вершину обязательно соединим с <tex>v</tex>.<br> |
Полученный граф <tex>G</tex>: | Полученный граф <tex>G</tex>: | ||
* Связен; | * Связен; |
Версия 19:24, 28 января 2016
Определение: |
Граф называется произвольно вычерчиваемым из вершины (англ. Arbitrarily traceable graph), если любая цепь с началом в вершине может быть продолжена до эйлерового цикла графа . |
Любой произвольно вычерчиваемый из вершины граф является эйлеровым графом.
Теорема: |
Эйлеров граф , содержащий хотя бы одно ребро, является произвольно вычерчиваемым из вершины вершина принадлежит всем циклам графа . |
Доказательство: |
Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам В . единственная компонента связности, содержащая ребра. При удалении их количество не могло увеличится, иначе должен быть цикл, не содержащий (смотри рисунок). Значит в единственная компонента связности содержащая ребра, причем либо полуэйлеров, либо эйлеров в эйлерова цепь эйлеров цикл в графе . |
Строение
Опираясь на теорему опишем строение всех графов, произвольно вычерчиваемых из вершины
Возьмем произвольный лес , не содержащий вершину . Каждую вершину нечетной степени соединим некоторым нечетным числом кратных ребер с , а каждую вершину четной степени четным числом кратных ребер с (не исключая ), причем каждую изолированную вершину обязательно соединим с .
Полученный граф :
- Связен;
- Имеет только вершины четной степени;
- Является произвольно вычерчиваемым из , как эйлеров граф, у которого принадлежит всем циклам.
Теперь докажем, почему таким образом можно получить все графы, произвольно вычерчиваемые из вершины
. Пусть какой-то такой граф нельзя получить методом описанным выше. Тогда уберем все ребра из вершины и посмотрим на граф, который остался. Он не является лесом, иначе мы могли бы получить этот граф нашим методом. Но если он не является лесом, то в нем есть хотя бы один цикл, который не содержит . А по теореме о произвольно вычерчиваемымых из вершины графах такого быть не может. Следовательно наше предположение ошибочно.См. также
Источники
- Асанов М., Баранский В., Расин В. Дискретная математика: Графы, матроиды, алгоритмы., Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5