Ковариация случайных величин — различия между версиями
(→Матрица ковариаций) |
|||
Строка 150: | Строка 150: | ||
<b> Свойства </b> | <b> Свойства </b> | ||
− | *Матрица ковариации случайного вектора неотрицательно определена: <tex>\mathrm{Cov}(\xi) \geqslant 0 </tex> | + | *<b>Матрица ковариации</b> (англ. ''covariance matrix'') случайного вектора неотрицательно определена: <tex>\mathrm{Cov}(\xi) \geqslant 0 </tex> |
*Перестановка аргументов: <tex> \mathrm{Cov}(\xi, \eta) = \mathrm{Cov}(\eta, \xi)^{\top} </tex> | *Перестановка аргументов: <tex> \mathrm{Cov}(\xi, \eta) = \mathrm{Cov}(\eta, \xi)^{\top} </tex> | ||
*Матрица ковариации аддитивна по каждому аргументу: | *Матрица ковариации аддитивна по каждому аргументу: | ||
Строка 157: | Строка 157: | ||
* Если <tex>\mathrm{Cov}(\xi, \eta) = 0</tex>, то <tex> \mathrm{Cov}(\xi + \eta) = \mathrm{Cov}(\xi) + \mathrm{Cov}(\eta) </tex> | * Если <tex>\mathrm{Cov}(\xi, \eta) = 0</tex>, то <tex> \mathrm{Cov}(\xi + \eta) = \mathrm{Cov}(\xi) + \mathrm{Cov}(\eta) </tex> | ||
== Расстояние Махаланобиса == | == Расстояние Махаланобиса == | ||
+ | <b>Расстояние Махаланобиса</b> (англ. ''Mahalanobis distance'') {{---}} мера расстояния между векторами случайных величин, обобщающая понятие евклидова расстояния. | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | Пусть <tex>\xi = (\xi_1, \xi_2, \xi_3, \ldots, \xi_n)^{\top}</tex> {{---}} многомерный вектор, <tex>\Sigma</tex> {{---}} матрица ковариации, тогда расстояние Махаланобиса от <tex>\xi</tex> до множества со средним значением <tex>\mu = (\mu_1, \mu_2, \mu_3, \ldots, \mu_n)^{\top}</tex> определяется как <tex> D_M (\xi) = \sqrt{(\xi - \mu)\Sigma (\xi - \mu)^{\top}}</tex> | ||
+ | }} | ||
+ | Расстояние Махаланобиса двух случайных векторов <tex>\xi, \eta</tex> с матрицей ковариации <tex>\Sigma</tex> {{---}} это мера различия между ними. | ||
+ | |||
+ | <tex>D_M(\xi, \eta) = \sqrt{(\xi - \eta)\Sigma (\xi - \eta)^{\top}} </tex> | ||
+ | <b>Замечание</b> | ||
+ | : Если матрица ковариации равняется единичной матрице, то расстояние Махалонобиса равняется расстоянию Евклида. | ||
== См. также == | == См. также == | ||
*[[Корреляция случайных величин|Корреляция случайных величин]] | *[[Корреляция случайных величин|Корреляция случайных величин]] | ||
Строка 166: | Строка 176: | ||
*[http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node48.html НГУ {{---}} Ковариация двух случайных величин] | *[http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node48.html НГУ {{---}} Ковариация двух случайных величин] | ||
*[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F Википедия {{---}} Ковариация] | *[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F Википедия {{---}} Ковариация] | ||
+ | *[https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0 Википедия {{---}} Матрица ковариации] | ||
+ | *[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5_%D0%9C%D0%B0%D1%85%D0%B0%D0%BB%D0%B0%D0%BD%D0%BE%D0%B1%D0%B8%D1%81%D0%B0 {{---}} Расстояние Махалонобиса] | ||
*[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F#.D0.9F.D0.B0.D1.80.D0.B0.D0.BC.D0.B5.D1.82.D1.80.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B5_.D0.BF.D0.BE.D0.BA.D0.B0.D0.B7.D0.B0.D1.82.D0.B5.D0.BB.D0.B8_.D0.BA.D0.BE.D1.80.D1.80.D0.B5.D0.BB.D1.8F.D1.86.D0.B8.D0.B8 Википедия {{---}} неравенство Коши — Буняковского (доказательство)] | *[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F#.D0.9F.D0.B0.D1.80.D0.B0.D0.BC.D0.B5.D1.82.D1.80.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B5_.D0.BF.D0.BE.D0.BA.D0.B0.D0.B7.D0.B0.D1.82.D0.B5.D0.BB.D0.B8_.D0.BA.D0.BE.D1.80.D1.80.D0.B5.D0.BB.D1.8F.D1.86.D0.B8.D0.B8 Википедия {{---}} неравенство Коши — Буняковского (доказательство)] | ||
Версия 21:51, 1 марта 2016
Определение: |
Пусть случайные величины, определённые на одном и том же вероятностном пространстве. Тогда ковариацией случайных величин (англ. covariance) и называется выражение следующего вида:
| — две
Содержание
Вычисление
В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
Утверждение: |
Если независимые случайные величины, то
|
|
Утверждение: |
Если независимыми , то и не обязательно являются |
Пусть задано вероятностное пространство с четырьмя равновероятными элементарными исходами. Возьмем на этом пространстве следующую случайную величину:
Тогда пусть случайная величная независимыми (достаточно проверить это при ). Найдем их ковариацию: . Эти две величины не являются
Как видно , но и не являются независимыми случайными величинами. |
Неравенство Коши — Буняковского
Утверждение: |
Ковариация есть скалярное произведение двух случайных величин |
Докажем три аксиомы скалярного произведения:
|
Теорема (неравенство Коши — Буняковского): |
Если принять в качестве скалярного произведения двух случайных величин ковариацию , то квадрат нормы случайной величины будет равен дисперсии и неравенство Коши-Буняковского запишется в виде:
|
Доказательство: |
Для этого предположим, что — некоторое вещественное число, и рассмотрим очевидное неравенство, где и . Используя линейность математического ожидания, мы получаем такое неравенство:
Обратим внимание, что левая часть является квадратным трехчленом, зависимым от .Мы имеем: , и Итак, наш квадратный трехчлен выглядит следующим образом:
Для того, чтобы неравенство выполнялось для всех значений , дискриминант должен быть неположительным, то есть:
|
Матрица ковариаций
Матрица ковариаций — это матрица, элементы которой являются попарными ковариациями элементов одного или двуз случайных векторов. Ковариационная матрица случайного вектора — квадратная симметрическая неотрицательно определенная матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы — ковариации между компонентами.
Определение: |
Пусть | — случайные вектора размерности и соответственно. — случайные величины. Тогда матрицей ковариаций векторов называется
Например, ковариационная матрица для случайного вектора
выглядит следующим образом:
Свойства
- Матрица ковариации (англ. covariance matrix) случайного вектора неотрицательно определена:
- Перестановка аргументов:
- Матрица ковариации аддитивна по каждому аргументу:
- Если , то
Расстояние Махаланобиса
Расстояние Махаланобиса (англ. Mahalanobis distance) — мера расстояния между векторами случайных величин, обобщающая понятие евклидова расстояния.
Определение: |
Пусть | — многомерный вектор, — матрица ковариации, тогда расстояние Махаланобиса от до множества со средним значением определяется как
Расстояние Махаланобиса двух случайных векторов
с матрицей ковариации — это мера различия между ними.Замечание
- Если матрица ковариации равняется единичной матрице, то расстояние Махалонобиса равняется расстоянию Евклида.