Алгоритм Манакера — различия между версиями
Rthakohov (обсуждение | вклад) |
|||
Строка 17: | Строка 17: | ||
'''while''' i - d2[i] - 1 > 0 '''and''' i + d2[i] <= n '''and''' s[i - d2[i] - 1] == s[i + d2[i]] | '''while''' i - d2[i] - 1 > 0 '''and''' i + d2[i] <= n '''and''' s[i - d2[i] - 1] == s[i + d2[i]] | ||
d2[i]++ | d2[i]++ | ||
+ | ==Алгоритм Манакера== | ||
+ | ===Идея=== | ||
+ | Алгоритм, который будет описан далее, отличается от наивного тем, что использует значения, посчитанные ранее. | ||
+ | Будем поддерживать границы самого правого из найденных палиндромов - <tex>[l; r]</tex>. Итак, пусть мы хотим вычислить <tex>d1[i]</tex> - т.е. длину наибольшего палиндрома с центром в позиции <tex>i</tex>. При этом все предыдущие значения в массиве <tex>d</tex> уже посчитаны. Возможны два случая: | ||
+ | |||
+ | 1. <tex>i > r</tex>, т.е. текущая позиция не попадает в границы самого правого из найденных палиндромов. Тогда просто запустим наивный алгоритм для позиции <tex>i</tex>. | ||
+ | |||
+ | 2. <tex>i \leq r</tex>. Тогда попробуем воспользоваться значениями, посчитанным ранее. Отразим нашу текущую позицию внутри палиндрома <tex>[l;r] : j = (r - i) + l</tex>. Поскольку <tex>i</tex> и <tex>j</tex> - симметричные позиции, то мы можем утверждать, <tex>d1[i] = d1[j]</tex>. Однако надо не забыть про один граничный случай: что если <tex>i + d1[j] - 1</tex> выходит за границы самого правого палиндрома? Так как информации о том, что происходит за границами это палинлрома у нас нет, то необходимо ограничить значение <tex>d1[i]</tex> следующим образом: <tex>d1[i] = min(r - i, d1[j]). |
Версия 21:55, 10 марта 2016
Задача: |
Пусть дана строка | . Требуется найти - длина наибольшего палиндрома нечетной длины с центром в позиции и - аналогично для палиндромов четной длины для всех от 1 до .
Наивный алгоритм
Идея
Опишем сначала наивный алгоритм решения задачи. Чтобы посчитать ответ для позиции
, будем на каждом шаге увеличивать длину палиндрома с центром в и убеждаться, что рассматриваемая строка не перестала быть палиндромом, либо не произошел выход за границы массива. Очевидно, что такой алгоритм будет работать заПсевдокод
//— исходная строка // — массивы для записи ответа for i = 1 to n d1[i] = 1 while i - d1[i] > 0 and i + d1[i] <= n and s[i - d1[i]] == s[i + d1[i]] d1[i]++ d2[i] = 0 while i - d2[i] - 1 > 0 and i + d2[i] <= n and s[i - d2[i] - 1] == s[i + d2[i]] d2[i]++
Алгоритм Манакера
Идея
Алгоритм, который будет описан далее, отличается от наивного тем, что использует значения, посчитанные ранее. Будем поддерживать границы самого правого из найденных палиндромов -
. Итак, пусть мы хотим вычислить - т.е. длину наибольшего палиндрома с центром в позиции . При этом все предыдущие значения в массиве уже посчитаны. Возможны два случая:1.
, т.е. текущая позиция не попадает в границы самого правого из найденных палиндромов. Тогда просто запустим наивный алгоритм для позиции .2.
. Тогда попробуем воспользоваться значениями, посчитанным ранее. Отразим нашу текущую позицию внутри палиндрома . Поскольку и - симметричные позиции, то мы можем утверждать, . Однако надо не забыть про один граничный случай: что если выходит за границы самого правого палиндрома? Так как информации о том, что происходит за границами это палинлрома у нас нет, то необходимо ограничить значение следующим образом: <tex>d1[i] = min(r - i, d1[j]).