Алгоритм Манакера — различия между версиями
Rthakohov (обсуждение | вклад) |
Rthakohov (обсуждение | вклад) |
||
| Строка 72: | Строка 72: | ||
Т.к. значение <tex>r</tex> не может увеличиваться более <tex>n</tex> раз, то описанный выше алгоритм работает за линейное время. | Т.к. значение <tex>r</tex> не может увеличиваться более <tex>n</tex> раз, то описанный выше алгоритм работает за линейное время. | ||
| + | |||
| + | == См. также == | ||
| + | * [[Z-функция]] | ||
== Источники информации == | == Источники информации == | ||
Версия 21:33, 17 марта 2016
| Задача: |
| Пусть дана строка . Требуется найти - длина наибольшего палиндрома нечетной длины с центром в позиции и - аналогично для палиндромов четной длины для всех от 1 до . |
Содержание
Наивный алгоритм
Идея
Опишем сначала наивный алгоритм решения задачи. Чтобы посчитать ответ для позиции , будем на каждом шаге увеличивать длину палиндрома с центром в и убеждаться, что рассматриваемая строка не перестала быть палиндромом, либо не произошел выход за границы массива. Очевидно, что такой алгоритм будет работать за
Псевдокод
// — исходная строка // — массивы для записи ответа for i = 1 to n d1[i] = 1 while i - d1[i] > 0 and i + d1[i] <= n and s[i - d1[i]] == s[i + d1[i]] d1[i]++ d2[i] = 0 while i - d2[i] - 1 > 0 and i + d2[i] <= n and s[i - d2[i] - 1] == s[i + d2[i]] d2[i]++
Алгоритм Манакера
Идея
Алгоритм, который будет описан далее, отличается от наивного тем, что использует значения, посчитанные ранее. Будем поддерживать границы самого правого из найденных палиндромов - . Итак, пусть мы хотим вычислить - т.е. длину наибольшего палиндрома с центром в позиции . При этом все предыдущие значения в массиве уже посчитаны. Возможны два случая:
- , т.е. текущая позиция не попадает в границы самого правого из найденных палиндромов. Тогда просто запустим наивный алгоритм для позиции .
- . Тогда попробуем воспользоваться значениями, посчитанным ранее. Отразим нашу текущую позицию внутри палиндрома . Поскольку и - симметричные позиции, то мы можем утверждать, . Однако надо не забыть про один граничный случай: что если выходит за границы самого правого палиндрома? Так как информации о том, что происходит за границами это палинлрома у нас нет, то необходимо ограничить значение следующим образом: . После этого запустим наивный алгоритм, который будет увеличивать значение , пока это возможно.
После каждого шага важно не забывать обновлять значения
Заметим, что массив считается аналогичным образом, нужно лишь немного изменить индексы.
Псевдокод
Приведем код, который вычисляет значения массива :
// — исходная строка
int l = 0
int r = -1
for i = 1 to n
int k = 0
if i <= r
k = min(r - i, d[r - i + l])
while i + k + 1 <= n and i - k - 1 > 0 and s[i + k + 1] == s[i - k - 1]
k++
d1[i] = k
if i + k > r
l = i - k
r = i + k
Вычисление значений массива :
// — исходная строка
int l = 0
int r = -1
for i = 1 to n
int k = 0
if i <= r
k = min(r - i + 1, d[r - i + l + 1])
while i + k <= n and i - k - 1 > 0 and s[i + k] == s[i - k - 1]
k++
d2[i] = k
if i + k - 1 > r
l = i - k
r = i + k - 1
Оценка сложности
Внешний цикл в приведенном алгоритме выполняется ровно раз, где - длина строки. Попытаемся понять, сколько раз будет выполнен внутренний цикл, ответственный за наивный подсчет значений. Заметим, что каждая итерация вложенного цикла приводит к увеличению на 1. Действительно, возможны следующие случаи:
- , т.е. сразу будет запущен наивный алгоритм и каждая его итерация будет увеличивать значение хотя бы на 1
- . Здесь опять два случая:
- , но тогда, очевидно, ни одной итерации вложенного цикла выполнено не будет
- , тогда каждая итерация вложенного цикла приведет к увеличению хотя бы на 1.
Т.к. значение не может увеличиваться более раз, то описанный выше алгоритм работает за линейное время.
