Суффиксный автомат — различия между версиями
м |
|||
Строка 38: | Строка 38: | ||
==Построение== | ==Построение== | ||
+ | ===Алгоритм=== | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
Строка 50: | Строка 51: | ||
# В противном случае, создадим новое состояние <tex>new</tex>, скопируем в него <tex>q</tex> вместе с суффиксными ссылками и переходами. <tex>len(new)</tex> присвоим значение <tex>len(p) + 1</tex>. Перенаправим суффиксную ссылку из <tex>q</tex> в <tex>new</tex> и добавим ссылку из <tex>cur</tex> в <tex>new</tex>. Пройдём по всем суффиксным ссылкам из состояния <tex>p</tex> и все переходы в состояние <tex>q</tex> по символу <tex>c</tex> перенаправим в <tex>new</tex>. | # В противном случае, создадим новое состояние <tex>new</tex>, скопируем в него <tex>q</tex> вместе с суффиксными ссылками и переходами. <tex>len(new)</tex> присвоим значение <tex>len(p) + 1</tex>. Перенаправим суффиксную ссылку из <tex>q</tex> в <tex>new</tex> и добавим ссылку из <tex>cur</tex> в <tex>new</tex>. Пройдём по всем суффиксным ссылкам из состояния <tex>p</tex> и все переходы в состояние <tex>q</tex> по символу <tex>c</tex> перенаправим в <tex>new</tex>. | ||
Обновим значение <tex>last = cur</tex>. | Обновим значение <tex>last = cur</tex>. | ||
+ | ===Пример построения=== | ||
+ | Рассмотрим построение суффиксного автомата для строки <tex>abcb</tex>. Серыми стрелками показаны суффиксные ссылки. | ||
+ | # Изначально автомат состоит из одного начального состояния. <tex>last = 0, len(0) = 0</tex>.<br><br>[[Файл:Suffix_automaton_s1.png|x180px|thumb|center|Шаг 1.]]<br> | ||
+ | # Добавляем символ <tex>a</tex>. Создаем состояние <tex>1</tex>. Переходов из начального состояния по символу <tex>a</tex> нет, перейти по суффиксным ссылкам некуда, значит добавим суффиксную ссылку <tex>link_{1} = 0</tex>. <tex>last = 1, len(1) = 1</tex>.<br><br>[[Файл:Suffix_automaton_s2.png|x180px|thumb|center|Шаг 2.]]<br> | ||
+ | # Добавляем символ <tex>b</tex>. Создаем состояние <tex>2</tex>. Добавим переход из <tex>1</tex>, откатимся по суффиксной ссылке и добавим переход из <tex>0</tex>. Добавим суффиксную ссылку <tex>link_{2} = 0</tex>. <tex>last = 2, len(2) = 2</tex>.<br><br>[[Файл:Suffix_automaton_s3.png|x180px|thumb|center|Шаг 3.]]<br> | ||
+ | # Аналогично добавим символ <tex>c</tex> и обновим автомат. <tex>last = 3, len(3) = 3</tex>.<br><br>[[Файл:Suffix_automaton_s4.png|x180px|thumb|center|Шаг 4.]]<br> | ||
+ | # Добавляем символ <tex>b</tex>. Добавим переход из <tex>3</tex> и перейдем по суффиксной ссылке в начальное состояние. Из состояния <tex>0</tex> существует переход по символу <tex>b</tex>.<br><br>[[Файл:Suffix_automaton_s5.png|x180px|thumb|center|Шаг 5.]]<br> | ||
+ | # Рассмотрим состояние <tex>2</tex>, куда существует переход. Имеем <tex>len(0) + 1 \neq len(2)</tex>. | ||
+ | ## Создаем новое состояние <tex>5</tex>. | ||
+ | ## Копируем в него все суффиксные ссылки и переходы из <tex>2</tex> и присвоим <tex>len(5) = len(0) + 1 = 1</tex>. | ||
+ | ## Перенаправим суффиксную ссылку из <tex>2</tex> в <tex>5</tex> и добавим ссылку из <tex>4</tex> в <tex>5</tex>. Перенаправим переход <tex>0 \rightarrow 2</tex> в состояние <tex>5</tex>.<br><br>[[Файл:Suffix_automaton_s6.png|x180px|thumb|center|Шаг 6.]]<br> | ||
+ | # Построение автомата завершено. Чтобы пометить терминальные вершины, найдём состояние, которое принимает строку <tex>abcb</tex> и пройдём по суффиксным ссылкам, помечая все посещенные состояния терминальными.<br><br>[[Файл:Suffix_automaton_s7.png|x180px|thumb|center|Шаг 7.]] | ||
==Реализация== | ==Реализация== |
Версия 18:11, 20 марта 2016
Определение: |
Суффиксный автомат (англ. suffix automaton, directed acyclic word graph) — минимальный ДКА, который принимает все суффиксы строки и только их. |
Содержание
Описание
Суффиксный автомат
для строки представляет собой ациклический ориентированный граф, с начальной вершиной и множеством терминальных вершин, рёбра которого помечены символами .
Определение: |
Состояние | принимает строку , если существует путь из начального состояния в , такой, что если последовательно выписать буквы на рёбрах на пути, получим строку .
Определение: |
Автомат принимает строку | , если её принимает хотя бы одно из финальных состояний.
Так как автомат детерминированный, то каждому пути соответствует строка.
Если две строки
и принимаются одним состоянием произвольного автомата, то для любой строки строки и принимаются или не принимаются автоматом одновременно. Действительно, независимо от того, как мы пришли в состояние , если мы пройдём из него по пути, соответствующему строке , мы сможем точно сказать, в какое состояние мы попадём (в частности, будет ли оно финальным). Значит, любому состоянию соответствует множество строк , которые переводят его в одно из конечных состояний.Определение: |
Множество | называют правым контекстом состояния.
Правый контекст определен не только для состояния, но и для строк, которые оно принимает — правый контекст строк совпадает с правым контекстом состояния.
Утверждение: |
Состояний в автомате не меньше, чем различных правых контекстов у подстрок строки, для которой он построен, причём в минимальном автомате достигается нижняя оценка. |
Допустим, что в автомате есть два состояния | и такие что . Мы можем удалить состояние и перевести переходы, ведущие в него в состояние . Множество принимаемых строк от этого не изменится, следовательно, мы можем продолжать, пока количество состояний не будет равно числу попарно различных правых контекстов.
Таким образом, ДКА является минимальным тогда и только тогда, когда правые контексты всех его состояний попарно различны. В случае суффиксного автомата правый контекст
строки взаимнооднозначно соответствует множеству правых позиций вхождений строки в строку . Таким образом, каждое состояние автомата принимает строки с одинаковым множеством правых позиций их вхождений и обратно, все строки с таким множеством позиций принимается этим состоянием.Построение
Алгоритм
Определение: |
Пусть длина самой короткой строки, которая принимается состоянием | равно , тогда суффиксная ссылка будет вести из этого состояния в состояние, которое принимает эту же строку без первого символа.
Будем обозначать длину самой длинной строки, которая принимается состоянием
Обозначим состояние , соответствующее текущей строке до добавления символа (изначально ).
Создадим новое состояние , .
Рассмотрим все переходы из по текущему символу . Если перехода нет, то добавляем переход в , переходим по суффиксной ссылке и повторяем процедуру снова. Если переход существует, то остановимся и обозначим текущее состояние за . Если перехода не нашлось и по суффиксным ссылкам мы дошли до фиктивного состояния (на которое указывает ), то .
Допустим, что мы остановились в состоянии , из которого существует переход с символом . Обозначим состояние, куда ведёт переход, через . Рассмотрим два случая:
- Если
- В противном случае, создадим новое состояние , скопируем в него вместе с суффиксными ссылками и переходами. присвоим значение . Перенаправим суффиксную ссылку из в и добавим ссылку из в . Пройдём по всем суффиксным ссылкам из состояния и все переходы в состояние по символу перенаправим в .
Обновим значение
.Пример построения
Рассмотрим построение суффиксного автомата для строки
. Серыми стрелками показаны суффиксные ссылки.- Изначально автомат состоит из одного начального состояния.
- Добавляем символ
- Добавляем символ
- Аналогично добавим символ
- Добавляем символ
- Рассмотрим состояние
- Создаем новое состояние .
- Копируем в него все суффиксные ссылки и переходы из и присвоим .
- Перенаправим суффиксную ссылку из
, куда существует переход. Имеем .
- Построение автомата завершено. Чтобы пометить терминальные вершины, найдём состояние, которое принимает строку
Реализация
- Переходы хранятся в массиве отображений (ключ — символ, значение — номер состояния) ,
- Суффиксные ссылки хранятся в массиве ,
- Длины строк хранятся в массиве .
func addChar(c):
r = newState() // создаём новое состояние и возвращаем его номер
p = last
while p >= 0 and edges[p].find(c) == edges[p].end():
edges[p][c] = r
p = link[p]
if p != -1:
q = edges[p][c]
if len[p] + 1 == len[q]:
link[r] = q
else:
new = clone(q) // скопируем состояние
len[new] = len[p] + 1
link[q] = link[r] = new
while p >= 0 and edges[p][c] == q:
edges[p][c] = new
p = link[p]
last = r
Источники информации
- Maxime Crochemore, Christophe Hancart, Thierry Lecroq — Algorithms on Strings
- А. Кульков — Лекция по суффиксным структурам
- MAXimal :: algo :: Суффиксный автомат