1outtreesumwc — различия между версиями
Shersh (обсуждение | вклад) м (→Свойства оптимального расписания) |
Shersh (обсуждение | вклад) м (→Алгоритм) |
||
Строка 72: | Строка 72: | ||
Детали описаны в алгоритме ниже, в котором | Детали описаны в алгоритме ниже, в котором | ||
− | * <tex> E(i) </tex> обозначает последнюю работу в последовательности <tex> \pi_i </tex> | + | * <tex> E(i) </tex> обозначает последнюю работу в последовательности <tex> \pi_i </tex>, |
* <tex> P(i) </tex> обозначает предка в графе зависимостей, а после слияния с какой-то вершиной <tex> j </tex> {{---}} предыдущую работу в последовательности <tex> \pi_j </tex>. | * <tex> P(i) </tex> обозначает предка в графе зависимостей, а после слияния с какой-то вершиной <tex> j </tex> {{---}} предыдущую работу в последовательности <tex> \pi_j </tex>. | ||
Строка 96: | Строка 96: | ||
После завершения этой процедуры оптимальное расписание можно восстановить с конца, зная <tex> E(root) </tex> и массив <tex> P </tex>. | После завершения этой процедуры оптимальное расписание можно восстановить с конца, зная <tex> E(root) </tex> и массив <tex> P </tex>. | ||
− | Если для получения работы <tex> j </tex> с минимальным значением <tex> q(j) </tex> использовать очередь с приоритетами, а для поиска родителям вершины использовать систему непересекающихся множеств, то время работы алгоритма будет <tex> O(n\log{n}) </tex>. | + | Если для получения работы <tex> j </tex> с минимальным значением <tex> q(j) </tex> использовать очередь с приоритетами, а для поиска родителям вершины использовать систему непересекающихся множеств, то время работы алгоритма будет <tex> \mathcal{O}(n\log{n}) </tex>. |
Проиллюстрируем работу алгоритма на следующем примере. | Проиллюстрируем работу алгоритма на следующем примере. |
Версия 20:43, 1 мая 2016
Задача: |
Необходимо составить расписание на одном станке работ с произвольными временами выполнения. Минимизировать нужно взвешенную сумму времен завершения работ. Зависимости между работами заданы исходящим деревом — работа, которая соответствует корню, доступна в начале, все другие работы зависят от одной работы — отца в дереве. |
Тривиальным примером подобной задачи является демонтаж сложного механизма.
Содержание
Свойства оптимального расписания
Докажем некоторые свойства оптимального расписания, которые мы будем использовать в доказательстве корректности алгоритма.
Введем некоторые обозначения для удобства. За
обозначим список всех ребёр дерева. Для всех работ обозначим за всех потомков в дереве зависимостей, включая саму работу , введём новый параметр работы .Для подмножества работ
определим:
Два непересекающихся множества работ
будем называть параллельными , если для всех выполняется: не является ни предком, ни потомком . Если множества состоят из одной работы , будем писать . Каждое расписание представлено перестановкой .Лемма: |
Пусть — оптимальное расписание, и — два таких параллельных блока (множества работ, выполняемых последовательно) из , что выполняется сразу после . Пусть — расписание, полученное из перестановкой и . Тогда выполяются следующие пункты:
|
Доказательство: |
|
Теорема: |
Пусть работы такие, что — предок , и . Тогда существует оптимальное расписание, в котором работа идёт сразу после работы |
Доказательство: |
Каждое расписание может быть представлено последовательностью работ в порядке, в котором они выполняются. Пусть будет оптимальной такой последовательностью. Также предположим, что количество работ между и равное было бы минимальным. Можно считать, что . Тогда расписание можно представить следующим образом:Рассмотрим случая.Случай 1:
Случай 2:
|
Алгоритм
Доказанная в предыдущем пункте теорема уже даёт основную идею алгоритма: взять работу , отличную от корня дерева, с максимальным значением и поставить её в расписании сразу после своего непосредственного предка . Так как существует оптимальное расписание, в котором работа идёт сразу после , то мы можем объедить вершины графа в одну вершину , которая представляет собой последовательность . Все сыновья работы станут сыновьями новой вершины .
Будем повторять процесс слияния вершин, пока не останется всего одна вершина.
Таким образом каждая вершина
представляется множеством работ и соответствующей этому множеству последовательностью . На очередном шаге алгоритма мы находим вершину , отличную от корня, с максимальным значением . Пусть — непосредственный предок работы . Тогда нам надо найти такую вершину , что . После этого мы объединяем обе вершины, заменяя и на и , где — это конкатенация последовательностей и .Детали описаны в алгоритме ниже, в котором
- обозначает последнюю работу в последовательности ,
- обозначает предка в графе зависимостей, а после слияния с какой-то вершиной — предыдущую работу в последовательности .
w[root] =for i = 1..n E[i] = {i} J[i] = {i} q[i] = w[i] \ p[i] L = {1, ... , n} while L {root} // пока в списке работ не останется только корень Найти работу j L с маскимальным значением q[j] par = P[j] Найти i, что par J[i] w[i] += w[j] p[i] += p[j] q[i] = w[i] / w[j] // пересчитаем значения в вершине P[j] = E[i] // предком работы j теперь будет последняя работа в E[i] = E[j] // последней работой в теперь будет последняя работа в J[i] = J[i] J[j] L = L \ {j}
Вначале делаем присваивание
, чтобы корень никогда не выбрался на шаге выбора вершины с максимальным значением . В реализации же можно просто дополнительно проверять на равенство с корнем, чтобы избежать переполнений или испортить значение .После завершения этой процедуры оптимальное расписание можно восстановить с конца, зная
и массив .Если для получения работы
с минимальным значением использовать очередь с приоритетами, а для поиска родителям вершины использовать систему непересекающихся множеств, то время работы алгоритма будет .Проиллюстрируем работу алгоритма на следующем примере.
Первой выберется работа с номером
. Она объединиться со своим родителем и допишется в конец . Потом выберется работа , потом и т. д. Процесс будет продолжаться, пока не останется одна вершина. Ответ — оптимальная последовательность работ — содержится в , который написан внутри последней вершины.Доказательство оптимальности алгоритма
Теорема: |
Алгоритм строит оптимальное расписание. |
Доказательство: |
Доказательство проведём по индукции. Очевидно, что для одной вершины алгоритм построит оптимальное расписание. Пусть теперь он может составить оптимальную последовательность назначенных работ числом меньше . Пусть также работы — работы, которые объединятся на первом шаге алгоритма. Тогда оптимальное расписание можно представить следующим образом:
После объединения работ и в одну расписание примет такой вид:
где . Обозначим за целевые функции для последовательностей и соответственно. Тогда
Следовательно, расписание будет оптимальным тогда и только тогда, когда расписание будет оптимальным. А по предположению индукции наш алгоритм составит оптимальное расписание для последовательности .Теперь разделим обе части равенства на . Получим, что расстояние между целевыми функциями равноЭто расстояние минимально (по модулю), так как мы выбирали работу с максимальным значением . Из этих утверждений и следует оптимальность построенного алгоритмом расписания. |
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 73 - 78