Слово Туэ-Морса — различия между версиями
(→Свойства и эквивалентные определения) |
(→Свойства и эквивалентные определения) |
||
Строка 18: | Строка 18: | ||
== Свойства и эквивалентные определения == | == Свойства и эквивалентные определения == | ||
− | + | ===Свойство о получении следующей строки=== | |
Как видно из определения, символ на <tex>i</tex>-ой позиции не зависит от номера строки. Так как длина строк возрастает, каждая строка является собственным префиксом следующей, поэтому можно рассматривать получение следующей строки как приписывание к текущей строке некоторой другой строки. | Как видно из определения, символ на <tex>i</tex>-ой позиции не зависит от номера строки. Так как длина строк возрастает, каждая строка является собственным префиксом следующей, поэтому можно рассматривать получение следующей строки как приписывание к текущей строке некоторой другой строки. | ||
Строка 37: | Строка 37: | ||
Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений. | Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений. | ||
+ | |||
+ | ===Свойство о подстроках=== | ||
{{Теорема | {{Теорема | ||
Строка 43: | Строка 45: | ||
|proof= | |proof= | ||
Очевидно что <tex>t_{2n}=t_n</tex> и <tex>t_{2n+1}=\varphi(t_n)</tex> для <tex>n \geqslant 0</tex>. | Очевидно что <tex>t_{2n}=t_n</tex> и <tex>t_{2n+1}=\varphi(t_n)</tex> для <tex>n \geqslant 0</tex>. | ||
− | Пусть существует две равные как строки подстрок строки <tex>T_n</tex>, имеющих пересекающиеся вхождения в <tex>T_n</tex>, тогда <tex>T_n=ucxcxcv</tex>, где <tex>u,c,x,v</tex> {{---}} подстроки строки <tex>T_n</tex>. | + | Пусть существует две равные как строки подстрок строки <tex>T_n</tex>, имеющих пересекающиеся вхождения в <tex>T_n</tex>, тогда <tex>T_n=ucxcxcv</tex>, где <tex>u,c,x,v</tex> {{---}} подстроки строки <tex>T_n</tex>, а строка <tex>cxc</tex> {{---}} искомая подстрока. |
Пусть <tex>m=|cx|</tex> и <tex>k=|u|</tex>, тогда <tex>t_{k+j}=t_{k+j+m}</tex> по предположению при <tex>0 \leqslant j \leqslant m</tex>. | Пусть <tex>m=|cx|</tex> и <tex>k=|u|</tex>, тогда <tex>t_{k+j}=t_{k+j+m}</tex> по предположению при <tex>0 \leqslant j \leqslant m</tex>. |
Версия 15:48, 7 мая 2016
Определение: |
Определим последовательность строк
| над двухбуквенным алфавитом следующим образом: , где:
Содержание
Примеры
Приведём первые пять строк Туэ-Морса:
Свойства и эквивалентные определения
Свойство о получении следующей строки
Как видно из определения, символ на
-ой позиции не зависит от номера строки. Так как длина строк возрастает, каждая строка является собственным префиксом следующей, поэтому можно рассматривать получение следующей строки как приписывание к текущей строке некоторой другой строки.Теорема: |
Пусть — морфизм, инвертирующий символы:
тогда для строк Туэ-Морса верно следующее соотношение: |
Доказательство: |
Заметим, что соответствующие индексы символов при приписывании новой строки к строке | получаются добавлением к индексам числа . Количество единиц в двоичной записи числа ( ) ровно на один больше, чем в двоичной записи числа . Поэтому приписываемая строка есть ни что иное, как исходная строка с инвертированными символами.
Данная теорема позволяет определять последовательность строк Туэ-Морса следующим образом:
, .Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений.
Свойство о подстроках
Теорема: |
Не существует двух равных как строки подстрок строки , имеющих пересекающиеся вхождения в |
Доказательство: |
Очевидно что и для . Пусть существует две равные как строки подстрок строки , имеющих пересекающиеся вхождения в , тогда , где — подстроки строки , а строка — искомая подстрока.Пусть и , тогда по предположению при .Рассмотрим наименьшее . Тогда возможны два случая: четно и нечетно:
|
См. также
Ссылки
- Wikipedia — Thue-Morse sequence
- Wolfram Mathworld — Thue-Morse sequence
- Jean-Paul Allouche,Jeffrey Shallit «Automatic Sequences: Theory, Applications, Generalizations» — 15 стр.