Opij1sumwu — различия между версиями
(→Время работы) |
(→Доказательство корректности) |
||
Строка 39: | Строка 39: | ||
Ответ на задачу будет находиться в <tex>f_1(0,0,\ldots,0)</tex> | Ответ на задачу будет находиться в <tex>f_1(0,0,\ldots,0)</tex> | ||
− | |||
− | |||
− | |||
==Время работы== | ==Время работы== |
Версия 17:26, 14 мая 2016
Задача: |
Дано | одинаковых станков, которые работают параллельно, и работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется за единицу времени. Для каждой работы есть время окончания — время, до которого она должна быть выполнена. Требуется минимизировать , то есть суммарный вес всех просроченных работ.
Описание алгоритма
Для решения этой задачи, мы должны найти множество .
, что минимальна. Будем решать эту задачу с помощью динамического программирования с использованием утверждений из решении задачиРассмотрим работы в порядке не убывания дедлайнов:
. Пусть мы нашли решение для работ . Очевидно, что .Пусть . Тогда, для добавления работы в множество должно выполняться неравенство: , где и — номер периода времени , чтобы и . Чтобы проверить это неравенство, нам нужно чисел .
— вектор соответствующий множеству из задачиОпределим переменные:
.
Тогда можно заметить, что
.Упростим исходное неравенство:
или .Для динамического программирования определим
для минимизации , где и где .Пусть
, тогда определим рекуррентное выражение для :
и начальное условие:
для .Ответ на задачу будет находиться в
Время работы
Для определения времени работы алгоритма надо заметить, что
, где . Из рекуррентной формулы очевидно, что подсчет одного значение нужно времени. Значит алгоритм работает за или для фиксированного .См. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — c. 168 - 171. ISBN 978-3-540-69515-8