Объединение матроидов, проверка множества на независимость — различия между версиями
Alice (обсуждение | вклад) м |
Alice (обсуждение | вклад) |
||
Строка 22: | Строка 22: | ||
А можно заметить, что в матроиде <tex>M</tex> выполняется <tex>r(U) = \max\limits_{A \in I, A \in I_{P_1}, P_1(A) \subset U} |A|</tex>. | А можно заметить, что в матроиде <tex>M</tex> выполняется <tex>r(U) = \max\limits_{A \in I, A \in I_{P_1}, P_1(A) \subset U} |A|</tex>. | ||
Т.е. мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов <tex>M_{\oplus}</tex> и <tex>M_{P_1}</tex>. Мы это уже умеем делать - [[Алгоритм построения базы в пересечении матроидов]]. | Т.е. мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов <tex>M_{\oplus}</tex> и <tex>M_{P_1}</tex>. Мы это уже умеем делать - [[Алгоритм построения базы в пересечении матроидов]]. | ||
+ | |||
+ | == См. также== | ||
+ | * [[Пересечение матроидов, определение, примеры]] | ||
== Литература == | == Литература == | ||
Строка 27: | Строка 30: | ||
* Chandra Chekuri {{---}} [https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture19.pdf '''Combinatorial Optimization'''] | * Chandra Chekuri {{---}} [https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture19.pdf '''Combinatorial Optimization'''] | ||
* https://en.wikipedia.org/wiki/Matroid | * https://en.wikipedia.org/wiki/Matroid | ||
+ | |||
+ | [[Категория:Алгоритмы и структуры данных]] | ||
+ | [[Категория:Матроиды]] |
Версия 03:49, 21 мая 2016
Определение: |
Пусть аксиомам независимости, следовательно, — матроид, для которого служит независимым множеством. Этот матроид называется объединением матроидов (англ. matroid union) и , и обозначается | и — два матроида на множестве элементов с наборами независимых множеств и . Положим . Множество удовлетворяет
Обычно термин "объединение" применяется, когда носители прямой суммой матроидов.
в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого и не перестанут быть матроидами. Если в и носители непересекающиеся, тогда это будет являться- Операция объединения матроидов ассоциативна, следовательно, можно говорить об объединении нескольких матроидов.
- В отличие от пересечения матроидов, объединение двух конечных (англ. finite matroid) матроидов всегда является матроидом, однако объединение двух бесконечных матроидов (англ. infinite matroid) не обязательно будет им.
- Объединение применяется к независимым множествам, а не к матроидам в целом, то есть это операция на другом уровне, по сравнению с пересечение матроидов.
Давайте зададим функцию : : , а для множества выполняется .
Определим ещё несколько матроидов, которые нам понадобятся:
.
.
Теперь перейдём к задаче. У нас есть множество и нужно проверить его независимость в объединении матроидов. Множество Алгоритм построения базы в пересечении матроидов.
- независимо, если . А можно заметить, что в матроиде выполняется . Т.е. мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов и . Мы это уже умеем делать -См. также
Литература
- Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. — Лекции по теории графов
- Chandra Chekuri — Combinatorial Optimization
- https://en.wikipedia.org/wiki/Matroid