Opij1sumwu — различия между версиями
(→Описание алгоритма) |
(→Описание алгоритма) |
||
Строка 28: | Строка 28: | ||
<tex>f_i(k,k_1 \ldots , k_m)=\left\{\begin{matrix} | <tex>f_i(k,k_1 \ldots , k_m)=\left\{\begin{matrix} | ||
− | f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i, & m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} < m \\ | + | f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i, & m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} < m (1)\\ |
− | \min(f_{i+1}(k,k_{1+p},k_{2+p}, \ldots ,k_{m+p})+w_i ; f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p})), & m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} \geqslant m\\ | + | \min(f_{i+1}(k,k_{1+p},k_{2+p}, \ldots ,k_{m+p})+w_i ; f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p})), & m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} \geqslant m (2)\\ |
\end{matrix} \right.</tex> | \end{matrix} \right.</tex> | ||
и начальное условие: <tex>f_{n+1}(k,k_1,\ldots ,k_m)=0 </tex> для <tex>k,k_1,\ldots ,k_m = 0,1,\ldots ,m</tex>. | и начальное условие: <tex>f_{n+1}(k,k_1,\ldots ,k_m)=0 </tex> для <tex>k,k_1,\ldots ,k_m = 0,1,\ldots ,m</tex>. | ||
+ | |||
+ | Если выполняется неравенство <tex>(1)</tex>, то мы не можем добавить работу <tex>i</tex> в множество <tex>S</tex> и поэтому <tex>f_i(k,k_1 \ldots , k_m) = f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i</tex>. | ||
+ | |||
+ | Если выполняется неравенство <tex>(2)</tex>, тогда мы может добавить работу <tex>i</tex> в множество <tex>S</tex> или не добавлять. Если мы добавим работу <tex>i</tex>, то <tex>f_i(k,k_1 \ldots , k_m) = f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p}) (3)</tex>. Если мы не добавим работу <tex>i</tex>, то по аналогии с первым случаем <tex>f_i(k,k_1 \ldots , k_m) = f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i (4)</tex>. Так как <tex>f_i(k,k_1 \ldots , k_m) = \min(\sum\limits_{j=i}^n {w_jU_j})</tex>, то нам надо взять минимум из значений <tex>(3)</tex> и <tex>(4)</tex>. | ||
Ответ на задачу будет находиться в <tex>f_1(0,0,\ldots,0)</tex>. | Ответ на задачу будет находиться в <tex>f_1(0,0,\ldots,0)</tex>. |
Версия 13:47, 22 мая 2016
Задача: |
Дано | одинаковых станков, которые работают параллельно, и работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется за единицу времени. Для каждой работы есть время окончания — время, до которого она должна быть выполнена. Требуется минимизировать , то есть суммарный вес всех просроченных работ.
Описание алгоритма
Для решения этой задачи, мы должны найти множество .
, что минимальна. Будем решать эту задачу с помощью динамического программирования с использованием утверждений из решении задачиРассмотрим работы в порядке не убывания дедлайнов:
. Пусть мы нашли решение для работ . Очевидно, что .Пусть . Тогда, для добавления работы в множество должно выполняться неравенство: , где и — количество периодов времени со свойствами: и . Чтобы проверить это неравенство, нам нужно посчитать чисел , . Для этого определим переменные:
— вектор соответствующий множеству из задачи
.
Тогда можно заметить, что
. Следовательно можно упростим исходное неравенство: или .Для динамического программирования определим
, где и где .Пусть
, тогда определим рекуррентное выражение для :
и начальное условие:
для .Если выполняется неравенство
, то мы не можем добавить работу в множество и поэтому .Если выполняется неравенство
, тогда мы может добавить работу в множество или не добавлять. Если мы добавим работу , то . Если мы не добавим работу , то по аналогии с первым случаем . Так как , то нам надо взять минимум из значений и .Ответ на задачу будет находиться в
.Время работы
Для определения времени работы алгоритма надо заметить, что
, где . Из рекуррентной формулы очевидно, что подсчет одного значение нужно времени. Значит алгоритм работает за или для фиксированного .См. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — c. 168 - 171. ISBN 978-3-540-69515-8