1ridipi1 — различия между версиями
(→Постановка задачи) |
|||
Строка 1: | Строка 1: | ||
==Постановка задачи== | ==Постановка задачи== | ||
− | Дан один станок на котором нужно выполнить <tex>n</tex> работ. Для каждой работы известны моменты времени, когда можно начинать её выполнять | + | Дан один станок на котором нужно выполнить <tex>n</tex> работ. Для каждой работы известны моменты времени, когда можно начинать её выполнять — <tex>r_{i}</tex> и когда необходимо закончить её выполнение — <tex>d_{i}</tex>. Время выполнения <tex>p_{i}</tex> у всех работ одинаково и равно 1. Необходимо узнать, можно ли построить расписание, при котором все работы будут выполнены. |
==Алгоритм== | ==Алгоритм== |
Версия 20:23, 4 июня 2016
Постановка задачи
Дан один станок на котором нужно выполнить
работ. Для каждой работы известны моменты времени, когда можно начинать её выполнять — и когда необходимо закончить её выполнение — . Время выполнения у всех работ одинаково и равно 1. Необходимо узнать, можно ли построить расписание, при котором все работы будут выполнены.Алгоритм
Идея алгоритма в том, чтобы из тех работ, которые уже можно выполнить, ставить в расписание ту, у которой наименьшее
. Если эта работа уже просрочена, значит хорошее расписание построить нельзя.Пусть
- множество ещё не включенных в расписание работ, к выполнению которых уже можно приступить. Изначально пустое. Отсортируем работы по порядку их появления.Алгоритм
Добавить в Пусть и минимально Расписание составить невозможно Удалить из
Сложность алгоритма
если в качестве использовать структуру, которая позволяет поиск элемента с минимальным за .Доказательство корректности алгоритма
Пусть с помощью нашего алгоритма составить хорошее расписание не удалось. Докажем, что в этом случае хорошего расписания не существует. Заметим, что расписание состоит из непрерывных блоков, между которыми есть пропуски - все поступившие работы выполнены, а новых работ ещё не появилось. Расписание может состоять из одного блока.
Рассмотрим первый блок, для которого не получилось составить расписание. Возьмем в нём первую работу, для которой не нашлось места. Пусть её индекс будет
. Попробуем вставить эту работу в расписание. До блока её вставить нельзя, так как больше или равно времени начала блока. А в блоке нет пропусков, поэтому нужно поменять её с какой-то -ой, которая уже стоит в этом блоке расписания. У всех таких работ меньше или равно , так как в алгоритме мы каждый раз брали работу с минимальным . Но -ую работу нельзя выполнить после -ой. Значит -ую работу выполнить нельзя.Литература
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8