F2Cmax — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (убрал неоднозначность)
м
Строка 1: Строка 1:
 +
<tex dpi=200>F2 \mid\mid C_{max} </tex>
 
{{Задача
 
{{Задача
 
|definition=Рассмотрим задачу:
 
|definition=Рассмотрим задачу:
*Дано <tex>n</tex> работ и <tex>2</tex> станка.
+
*дано <tex>n</tex> работ и <tex>2</tex> станка,
*Для каждой работы известно её время выполнения на каждом станке <tex>p_{ij}</tex>.
+
*для каждой работы известно её время выполнения на каждом станке <tex>p_{ij}</tex>,
*Каждую работу необходимо выполнить сначала на первом станке, а потом на втором  
+
*каждую работу необходимо выполнить сначала на первом станке, а потом на втором.
 
Требуется минимизировать время окончания выполнения всех работ. }}
 
Требуется минимизировать время окончания выполнения всех работ. }}
  
Строка 10: Строка 11:
 
Пусть <tex>p_{i1}</tex> {{---}} время выполнения <tex>i</tex>-ой работы на первом станке, а <tex>p_{i2}</tex> {{---}} на втором.<br/>
 
Пусть <tex>p_{i1}</tex> {{---}} время выполнения <tex>i</tex>-ой работы на первом станке, а <tex>p_{i2}</tex> {{---}} на втором.<br/>
 
<ol>
 
<ol>
<li>Будем в ходе нашего алгоритма строить два списка <tex> L </tex> и <tex>  R </tex>. Изначально оба списка пусты. И будем поддерживать множество еще не распределенных по спискам <tex> L </tex> и <tex>  R </tex> работ <tex>X = \{i \mid  i = 1, \dots, n\}</tex>  </li>
+
<li>Алгоритм строит два списка <tex> L </tex> и <tex>  R </tex>. Изначально они пусты. Также поддерживается множество еще не распределенных по спискам <tex> L </tex> и <tex>  R </tex> работ <tex>X = \{i \mid  i = 1, \dots, n\}</tex>  </li>
<li> Пока множество <tex> X </tex> не пусто, будем распределять работы по спискам следующим образом:
+
<li> Пока множество <tex> X </tex> не пусто, распределяем работы по спискам следующим образом:
 
<ul>
 
<ul>
 
<li> Находим такие индексы <tex> i </tex> и <tex> j </tex>, что  <tex>p_{ij} = \min \{ p_{ij}  \mid i \in X; j = 1, 2\}</tex> </li>
 
<li> Находим такие индексы <tex> i </tex> и <tex> j </tex>, что  <tex>p_{ij} = \min \{ p_{ij}  \mid i \in X; j = 1, 2\}</tex> </li>
Строка 18: Строка 19:
 
</ul>
 
</ul>
 
</li>
 
</li>
<li> Рассмотрим список <tex> T = L \circ R</tex>. Утверждается, что этот список является оптимальной перестановкой работ как на первом, так и на втором станке. Далее расставляем подряд работы на первом станке согласно перестановке, после чего ставим в том же порядке работы на втором станке, при этом избегая одновременного выполнения одной и той же работы. </li>
+
<li> Рассмотрим список <tex> T = L + R</tex> - конкатенацию <tex> L</tex> и <tex>R</tex>. Утверждается, что этот список является оптимальной перестановкой работ как на первом, так и на втором станке. Далее расставляем подряд работы на первом станке согласно перестановке, после чего ставим в том же порядке работы на втором станке, при этом избегая одновременного выполнения одной и той же работы. </li>
  
 
</ol>
 
</ol>
Строка 29: Строка 30:
 
|proof=
 
|proof=
 
[[Файл:f2cmax_first_fixed.png|400px|thumb|right|Рис. 1]]
 
[[Файл:f2cmax_first_fixed.png|400px|thumb|right|Рис. 1]]
Предположим обратное: что не существует оптимального расписания с одинаковыми перестановками работ на станках. Рассмотрим некоторое оптимальное расписание с максимальным по длине общим префиксом на станках.  
+
Предположим обратное: что не существует оптимального расписания с одинаковыми перестановками работ на станках.  
 
+
Рассмотрим некоторое оптимальное расписание с максимальным по длине общим префиксом на станках. Пусть его длина равна <tex> k </tex>, где <tex> k < n </tex>. Пусть на <tex> k </tex> позиции на первом и втором станках стоит работа <tex> i </tex>, а на втором станке на позиции <tex> k + 1 </tex> стоит работа <tex> j </tex>. Тогда заметим, что если мы поставим работу <tex> j </tex> на первом станке сразу после работы <tex> i </tex>, то последовательные работы с <tex> h </tex> по <tex> m </tex> (см. Рис. 1) по-прежнему будут успевать выполниться, так как на втором станке они выполняются в текущем расписании после <tex> j </tex>. Таким образом нам удалось увеличить длину наибольшего общего префикса, а так как по нашему предположению она была максимальна, то наше предположение неверно, то искомое расписание с одинаковым порядком выполнения работ на обоих станках существует.
Пусть его длина равна <tex> k </tex>, где <tex> k < n </tex>. Пусть на <tex> k </tex> позиции на первом и втором станках стоит работа <tex> i </tex>, а на втором станке на позиции <tex> k + 1 </tex> стоит работа <tex> j </tex>. Тогда заметим, что если мы поставим работу <tex> j </tex> на первом станке сразу после работы <tex> i </tex>, то последовательные работы с <tex> h </tex> по <tex> m </tex> (см. Рис. 1) по-прежнему будут успевать выполниться, так как на втором станке они выполняются в текущем расписании после <tex> j </tex>. Таким образом нам удалось увеличить длину наибольшего общего префикса, а так как по нашему предположению она была максимальна, то наше предположение неверно, то искомое расписание с одинаковым порядком выполнения работ на обоих станках существует.
 
 
}}
 
}}
  
Таким образом задача сводится к поиску этой искомой перестановки.  Докажем, что полученный нашим алгоритмом список является оптимальной перестановкой работ.  
+
Таким образом задача сводится к поиску этой искомой перестановки.  Докажем, что полученный приведенным выше алгоритмом список является оптимальной перестановкой работ.  
  
 
{{лемма
 
{{лемма
 
|id=lemma1
 
|id=lemma1
 
|about=1
 
|about=1
|statement= Если для каких-то работ <tex> i </tex> и <tex> j </tex> из списка <tex> T </tex> верно неравенство <tex> \min(p_{i1}, p_{j2}) <  \min(p_{j1}, p_{i2}) </tex>, то работа <tex> i </tex> встречается в списке <tex> T </tex> раньше, чем <tex> j </tex>
+
|statement= Если для каких-то работ <tex> i </tex> и <tex> j </tex> из списка <tex> T </tex> верно неравенство <tex> \min(p_{i1}, p_{j2}) <  \min(p_{j1}, p_{i2}) </tex>, то работа <tex> i </tex> встречается в списке <tex> T </tex> раньше, чем <tex> j </tex>.
 
|proof=
 
|proof=
 
Пусть <tex> p_{i1} < p_{j2} </tex>. Случай <tex> p_{i1} > p_{j2} </tex> рассматривается аналогично.  
 
Пусть <tex> p_{i1} < p_{j2} </tex>. Случай <tex> p_{i1} > p_{j2} </tex> рассматривается аналогично.  
  
То есть имеем, что <tex> p_{i1} < \min(p_{j1}, p_{i2}) </tex>. Так как <tex> p_{i1} < \min(p_{j1}, p_{i2}) \leqslant p_{i2} </tex>, то работа <tex> i \in L </tex>. Работа <tex> j </tex> либо стоит в <tex> R </tex>, либо она стоит в <tex> L </tex> и при этом <tex> p_{i1} < p_{j1} </tex>. Заметим, что в обоих случаях она расположена позже (в силу нашего построения), чем работа <tex> i </tex>, то лемма доказана.  
+
Так как <tex> p_{i1} < \min(p_{j1}, p_{i2}) \leqslant p_{i2} </tex>, то работа <tex> i \in L </tex>. Работа <tex> j </tex> либо стоит в <tex> R </tex>, либо она стоит в <tex> L </tex> и при этом <tex> p_{i1} < p_{j1} </tex>. Заметим, что в обоих случаях она расположена позже (в силу нашего построения), чем работа <tex> i </tex>.
  
 
}}
 
}}

Версия 23:32, 6 июня 2016

[math]F2 \mid\mid C_{max} [/math]

Задача:
Рассмотрим задачу:
  • дано [math]n[/math] работ и [math]2[/math] станка,
  • для каждой работы известно её время выполнения на каждом станке [math]p_{ij}[/math],
  • каждую работу необходимо выполнить сначала на первом станке, а потом на втором.
Требуется минимизировать время окончания выполнения всех работ.


Описание алгоритма

Пусть [math]p_{i1}[/math] — время выполнения [math]i[/math]-ой работы на первом станке, а [math]p_{i2}[/math] — на втором.

  1. Алгоритм строит два списка [math] L [/math] и [math] R [/math]. Изначально они пусты. Также поддерживается множество еще не распределенных по спискам [math] L [/math] и [math] R [/math] работ [math]X = \{i \mid i = 1, \dots, n\}[/math]
  2. Пока множество [math] X [/math] не пусто, распределяем работы по спискам следующим образом:
    • Находим такие индексы [math] i [/math] и [math] j [/math], что [math]p_{ij} = \min \{ p_{ij} \mid i \in X; j = 1, 2\}[/math]
    • Если минимум достигается на первом станке (иными словами [math] j = 1 [/math]), то поставим работу [math] i [/math] в конец списка [math] L [/math], иначе ставим в начало списка [math] R [/math]
    • Удаляем работу [math] i [/math] из множества [math] X [/math]
  3. Рассмотрим список [math] T = L + R[/math] - конкатенацию [math] L[/math] и [math]R[/math]. Утверждается, что этот список является оптимальной перестановкой работ как на первом, так и на втором станке. Далее расставляем подряд работы на первом станке согласно перестановке, после чего ставим в том же порядке работы на втором станке, при этом избегая одновременного выполнения одной и той же работы.

Доказательство корректности алгоритма

Теорема:
Существует оптимальное расписание, в котором станки выполняют работы в одном и том же порядке.
Доказательство:
[math]\triangleright[/math]
Рис. 1

Предположим обратное: что не существует оптимального расписания с одинаковыми перестановками работ на станках.

Рассмотрим некоторое оптимальное расписание с максимальным по длине общим префиксом на станках. Пусть его длина равна [math] k [/math], где [math] k \lt n [/math]. Пусть на [math] k [/math] позиции на первом и втором станках стоит работа [math] i [/math], а на втором станке на позиции [math] k + 1 [/math] стоит работа [math] j [/math]. Тогда заметим, что если мы поставим работу [math] j [/math] на первом станке сразу после работы [math] i [/math], то последовательные работы с [math] h [/math] по [math] m [/math] (см. Рис. 1) по-прежнему будут успевать выполниться, так как на втором станке они выполняются в текущем расписании после [math] j [/math]. Таким образом нам удалось увеличить длину наибольшего общего префикса, а так как по нашему предположению она была максимальна, то наше предположение неверно, то искомое расписание с одинаковым порядком выполнения работ на обоих станках существует.
[math]\triangleleft[/math]

Таким образом задача сводится к поиску этой искомой перестановки. Докажем, что полученный приведенным выше алгоритмом список является оптимальной перестановкой работ.

Лемма (1):
Если для каких-то работ [math] i [/math] и [math] j [/math] из списка [math] T [/math] верно неравенство [math] \min(p_{i1}, p_{j2}) \lt \min(p_{j1}, p_{i2}) [/math], то работа [math] i [/math] встречается в списке [math] T [/math] раньше, чем [math] j [/math].
Доказательство:
[math]\triangleright[/math]

Пусть [math] p_{i1} \lt p_{j2} [/math]. Случай [math] p_{i1} \gt p_{j2} [/math] рассматривается аналогично.

Так как [math] p_{i1} \lt \min(p_{j1}, p_{i2}) \leqslant p_{i2} [/math], то работа [math] i \in L [/math]. Работа [math] j [/math] либо стоит в [math] R [/math], либо она стоит в [math] L [/math] и при этом [math] p_{i1} \lt p_{j1} [/math]. Заметим, что в обоих случаях она расположена позже (в силу нашего построения), чем работа [math] i [/math].
[math]\triangleleft[/math]
Лемма (2):
Пусть имеем произвольное расписание, в котором работа [math] j [/math] идет сразу же после работы [math] i [/math]. Тогда если [math] \min(p_{j1}, p_{i2}) \leqslant \min(p_{i1}, p_{j2}) [/math], то можем поменять местами эти работы без ухудшения целевой функции.
Доказательство:
[math]\triangleright[/math]
Рис. 2 - Расположение последовательных работ

Пусть [math] w_{ij} [/math] — время, прошедшее с начала выполнения работы [math] i [/math] на первом станке до окончания работы [math] j [/math] на втором станке.

Рассмотрим возможные случаи расположения работ [math] i [/math] и [math] j [/math] (см. Рис. 2)

  1. Работа [math] i [/math] начинается на втором станке сразу же после завершения ее на первом
    • Выполнение работы [math] i [/math] на втором станке заканчивается позже, чем работы [math] j [/math] на первом. В этом случае [math] w_{ij} = p_{i1} + p_{i2} + p_{j2} [/math].
    • Выполнение работы [math] i [/math] на втором станке заканчивается раньше, чем работы [math] j [/math] на первом. В этом случае [math] w_{ij} = p_{i1} + p_{j1} + p_{j2} [/math].
  2. Работа [math] i [/math] не может начаться на втором станке сразу же после завершения ее на первом
    • Выполнение работы [math] i [/math] на втором станке заканчивается раньше, чем работы [math] j [/math] на первом. В этом случае снова имеем [math] w_{ij} = p_{i1} + p_{j1} + p_{j2} [/math].
    • Выполнение работы [math] i [/math] на втором станке заканчивается позже, чем работы [math] j [/math] на первом. Пусть [math] delta [/math] — время прошедшее с начала выполнения работы [math] i[/math] на первом станке и до начала ее выполнения на втором станке. Тогда имеем, что [math] w_{ij} = delta + p_{i2} + p_{j2} [/math].

Таким образом, [math] w_{ij} = \max (p_{i1} + p_{j1} + p_{j2}, p_{i1} + p_{i2} + p_{j2}, delta + p_{i2} + p_{j2}) [/math]. Иначе говоря [math] w_{ij} = \max (p_{i1} + \max(p_{j1}, p_{i2}) + p_{j2}, delta + p_{i2} + p_{j2}) [/math].

Аналогично имеем, что [math] w_{ji} = \max (p_{j1} + \max(p_{i1}, p_{j2}) + p_{i2}, delta + p_{i2} + p_{j2}) [/math]

Так как [math] \min(a, b) = - \max(-a, -b)[/math], то из условия леммы имеем [math] \max(-p_{i1}, -p_{j2}) \leqslant \max(-p_{j1}, -p_{i2}) [/math], то добавим [math] p_{i1} + p_{i2} + p_{j1} + p_{j2} [/math] к обеим частям. То получим, что [math] p_{j1} + \max(p_{i1}, p_{j2}) + p_{i2} \leqslant p_{i1} + \max(p_{j1}, p_{i2}) + p_{j2} [/math], то есть [math] w_{ji} \leqslant w_{ij} [/math], то при смене местами работ [math] i [/math] и [math] j [/math] ответ не ухудшается.
[math]\triangleleft[/math]


Теорема:
Построенная перестановка [math] T [/math] является оптимальной.
Доказательство:
[math]\triangleright[/math]

Рассмотрим произвольную перестановку [math] S [/math]. Пусть перестановки [math] T [/math] и [math] S [/math] имеют общий префикс длины [math] l-1 [/math]. Пусть [math] i = T_{l} [/math] и [math] j = S_{l} [/math]. Рассмотрим множество работ [math]M = \{T_{r} \mid r = l, \dots, n\}[/math]. Заметим, что для любой работы [math] k \in M [/math] верно, что [math] \min(p_{k1}, p_{i2}) \geqslant \min(p_{i1}, p_{k2}) [/math], так как если было бы верно обратное, то есть [math] \min(p_{k1}, p_{i2}) \lt \min(p_{i1}, p_{k2}) [/math], то по лемме 1 было бы верно, что [math] k [/math] идет раньше [math] i [/math], что неверно.

Очевидно, что в перестановке [math] S [/math] работа [math] i [/math] будет стоять после [math] j [/math] (иначе общий префикс был бы длиннее), то заметим, что в этой перестановке для работы [math] i [/math] и для предыдущей работы [math] w [/math] верно [math] \min(p_{w1}, p_{i2}) \geqslant \min(p_{i1}, p_{w2}) [/math] (так как [math] w \in M [/math]), то по лемме 2 можем поменять местами работы [math] i [/math] и [math] w [/math] без ухудшения ответа. То такими операциями сможем дойти до пары работ [math] i [/math] и [math] j [/math], которые при смене увеличат общий префикс перестановок [math] S [/math] и [math] T [/math].

Таким образом любая перестановка сводится к нашей без ухудшения ответа такими операциями, что подтверждает оптимальность перестановки [math] T [/math]
[math]\triangleleft[/math]

Псевдокод

  function F2Cmax(n: int, p: int[i][2]):
     L = [math]\varnothing [/math]
     R = [math]\varnothing [/math]
     X = [math]\{1, \dots, n\}[/math]
     while  X [math] \neq \varnothing[/math]:
        Найти i  и j , такие что [math]p_{ij} = \min \{ p_{ij}  \mid i \in X; j = 1, 2\}[/math]
        if j == 1:
           L.addLast(i)
        else: 
           R.addFirst(i)
        X.remove(i)
     T = L [math]\circ[/math] R
     return T

Сложность алгоритма

Заметим, что на каждом шаге алгоритма мы выбираем минимум из оставшихся элементов за [math]O(\log n)[/math] (либо предварительной сортировкой, либо любой структурой данных, поддерживающей нахождение минимума и удаление за [math]O(\log n)[/math]). И делаем мы это [math] n [/math] раз, следовательно алгоритм работает за [math]O(n\log n)[/math].

Источники

  • Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 175 стр. — ISBN 978-3-540-69515-8