1ripmtnsumwu — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Второй случай)
(Второй случай)
Строка 58: Строка 58:
 
В этом случае существует простой в EDD расписании для множества <tex>C(S \setminus \{j\})</tex> после <tex>r_{j}</tex>. Пусть <tex>S'</tex> {{---}} последний блок в <tex>C(S \setminus \{j\})</tex>, то есть <tex>r(S') = \max\{r(B) \mid B </tex> является блоком в <tex> C(S \setminus \{j\}) \} </tex>. Тогда <tex>r(S') \geqslant r_{j}</tex>, в таком случае обязано выполняться равенство <tex>C(S') = C_{j - 1}(r(S'), w(s'))</tex>, иначе расписание для <tex>S</tex> будет не оптимально.  
 
В этом случае существует простой в EDD расписании для множества <tex>C(S \setminus \{j\})</tex> после <tex>r_{j}</tex>. Пусть <tex>S'</tex> {{---}} последний блок в <tex>C(S \setminus \{j\})</tex>, то есть <tex>r(S') = \max\{r(B) \mid B </tex> является блоком в <tex> C(S \setminus \{j\}) \} </tex>. Тогда <tex>r(S') \geqslant r_{j}</tex>, в таком случае обязано выполняться равенство <tex>C(S') = C_{j - 1}(r(S'), w(s'))</tex>, иначе расписание для <tex>S</tex> будет не оптимально.  
  
Кроме того, мы можем предположить, что общее количество сделанных работ в <tex>(S \setminus \{j\}) \setminus S'</tex>, лежащих в интервале <tex>[r_{j}, r(S')]</tex>, {{---}} минимально, учитвая выполнимые множества  <tex>S  \subseteq \{1 \ldots j \}</tex> такие, что <tex>r(S'') \geqslant r, C(S'') \leqslant r(S'), w(S'') \geqslant w - w_{j} - w(S')</tex>.
+
Кроме того, мы можем предположить, что общее количество сделанной работы в <tex>(S \setminus \{j\}) \setminus S'</tex>, лежащих в интервале <tex>[r_{j}, r(S')]</tex>, {{---}} минимально, учитвая выполнимые множества  <tex>S  \subseteq \{1 \ldots j \}</tex> такие, что <tex>r(S'') \geqslant r, C(S'') \leqslant r(S'), w(S'') \geqslant w - w_{j} - w(S')</tex>.
  
Пусть <tex>r, r'</tex> {{---}} даты появления <tex>r \leqslant r_{j} < r</tex>, и <tex>w''</tex> {{---}} некоторое целочисленное значение <tex>0 \leqslant w'' < W</tex>. За <tex>P_{j - 1}(r, r', w'')</tex> возьмем минимальное число выполненных работ в итервале <tex>[r_{j}, r']</tex>,  учитвая выполнимые множества <tex>S  \subseteq \{1 \ldots j \}</tex> такие, что <tex>r(S'') \geqslant r, C(S'') \leqslant r', w(S'') \geqslant w''</tex>. Если таких выполнимых множеств нет, то <tex>P_{j - 1}(r, r', w'') = \infty</tex>.
+
Пусть <tex>r, r'</tex> {{---}} даты появления <tex>r \leqslant r_{j} < r</tex>, и <tex>w''</tex> {{---}} некоторое целочисленное значение <tex>0 \leqslant w'' < W</tex>. За <tex>P_{j - 1}(r, r', w'')</tex> возьмем минимальное число сделанной работы в итервале <tex>[r_{j}, r']</tex>,  учитвая выполнимые множества <tex>S  \subseteq \{1 \ldots j \}</tex> такие, что <tex>r(S'') \geqslant r, C(S'') \leqslant r', w(S'') \geqslant w''</tex>. Если таких выполнимых множеств нет, то <tex>P_{j - 1}(r, r', w'') = \infty</tex>.
 +
 
 +
Используя данную запись, количество времен доступнух для обработки работы <tex>j</tex> в интервале <tex>[r_j, r(S')]</tex> записывается формулой
 +
:<tex>(r(S') - r_j) - P_{j - 1}(r, r(S'), w - w_j - w(S'))</tex>.
 +
 
 +
Количество готовности работы (какое количество уже сделано) <tex>j</tex> после времени
 +
:<tex>\max(0, p_j - (r(S') - r_j) + P_{j - 1}(r, r(S'), w - w_j - w(S'))</tex>.
 +
 
 +
И время выполнения последней работы <tex>j</tex> из <tex>S</tex>
 +
:<tex>C_j(r,w) = \min\limits_{r', w'} \{ C_{j - 1}(r', w') + \max \{ 0, p_j - r' + r_j + P_{j - 1}(r, r', w - w_j - w'  \} \}</tex>.
  
 
=== Конечная формула ===
 
=== Конечная формула ===

Версия 12:11, 7 июня 2016

[math]1 \mid r_i, pmtn \mid \sum w_{i}U_{i}[/math]


Задача:
Дана задача на нахождение расписания:
  1. У нас есть несколько работ, которе необходимо выполнит на одном станке.
  2. У работ есть время появления [math]r_i[/math]
  3. Работы разрешается прерывать в любой момент времени.
  4. Все значения целочисленны, веса [math]w_{i}[/math] положительны.
Требуется выполнить все работы, чтобы значение [math]\sum w_i U_i[/math] (суммарный вес просроченных работ) было минимальным.


Описание алгоритма

Идея

Пусть работы заданы в порядке неубывания их дедлайнов, то есть [math]d_1 \leqslant d_2 \leqslant \ldots \leqslant d_n[/math]. За [math]k[/math] обозначим количество различных [math]r_{i}[/math].

Назовем множество работ [math]S[/math] выполнимым (англ. feasible), если существует такое расписание для работ из [math]S[/math], что все работы будут выполнены без опозданий. Чтобы проверить, является ли множество работ выполнимым, воспользуемся упрощенной версией EDD правила (см. стр 70 в Брукере):

Составим расписание работ таким образом, чтобы первой в расписании стояла работа с наименьшим значением [math]r_{i}[/math]. В любой момент времени, когда появляется новая работа, либо заканчивает выполняться текущая, вставим в расписание работу с наименьшим оставшимся сроком.

[math]S[/math] выполнимо тогда и только тогда, когда все работы в EDD расписании выполняются без опозданий. Это прямое следствие из уже теоремы 4.4 (Брукер). Если в [math]S[/math] содержится [math]n[/math] работ, то построение EDD расписание может быть выполнено за [math]O(n \log n)[/math] времени. Наша задача сводится к тому, чтобы найти выполнимое множество работ с максимальным суммарным весом.

Для данного непустого множества [math]S[/math] определим следующие величины:

[math]r(S) = \min\limits_{i \in S} r_{i} ; p(S) = \sum\limits_{i \in S} p_{i}; w(S) = \sum\limits_{i \in S} w_{i}[/math]

Кроме того, обозначим за [math]C(S)[/math] время последней выполненной работы из [math]S[/math] в EDD расписании. Оно состоит из периодов непрерывного выполнения работы, разделенных периодами бездействия, когда нет доступных работ для выполнения. Это означает, что [math]S[/math] может быть разделено на множества [math]S_{1} \ldots S_{x}[/math], для которых выполняется [math]C(S_{i}) = r(S_{i}) + p(S_{i}) \lt r(S_{i + 1})[/math] для [math]i = 1 \ldots x - 1 [/math].

Выполнимое множество [math]S[/math] является блоком (англ. block), если работы из [math]S[/math] обрабатываются непрерывно с начала и до конца, и [math]S[/math] не может быть разделен на подмножества, расписания для которых не пересекаются, например, если [math]C(S) = r(S)+ p(S)[/math] и [math]S[/math] не является объединением [math]S_{1}[/math] и [math]S_{2}[/math] таких, что [math]C(S_{1}) \lt r(S_{2})[/math]. Решим задачу [math]1 \mid r_i, pmtn \mid \sum w_{i}U_{i}[/math] методами динамического программирования.

Введем величину [math]C_{i}(r, w) = \min \{C(S) \mid S \subseteq \{ 1 \ldots i \} [/math] — выполнимое[math]; r(S) \geqslant r; w(S) \geqslant w \}[/math] и [math]C_{i}(r, w) = \infty[/math], если множеств, удовлетворяющих условиям, нет.

Максимальный вес выполнимого множества задается максимальным значением [math]w[/math] такого, что [math]C_{n}(r_{\min}, w[/math] конечно, где [math]r_{\min} = \min\limits_{j = 1 \ldots n} r_{i}[/math]. Посчитаем значения [math]C_{j}(r, w)[/math] за [math]n[/math] итераций с начальными значениями

[math]C_{0}(r, 0) = 0[/math] для всех [math]r[/math]
[math]C_{0}(r, w) = \infty[/math] для всех [math]r[/math] и [math]w \gt 0[/math]

[math]j[/math] не может содержаться в выполнимом множестве, если [math]r(S) \gt r_{j}[/math]. Следовательно,

[math]C_{j}(r, w) \left \{\begin{array}{ll} = C_{j - 1}(r, w) & \text{if } r \gt r_{j} \\ \leqslant C_{j - 1}(r, w), & \text{otherwise} \end{array} \right. [/math]

Отсюда следует, что нам нужно посчитать только такие значения [math]C_{j} (r, w)[/math] для которых [math]r \leqslant r_{j}[/math]. Пусть [math] S \subseteq \{ 1 \ldots j \} [/math] и [math]C_{j}(r, w) = C(S)[/math]. Если [math]j \notin S[/math], тогда [math]C_{j}(r, w) = C_{j - 1}(r, w)[/math]. Иначе рассмотрим два случая.

Первый случай

Работа [math]j[/math] начинается после [math]C(S \setminus \{j\})[/math].

Рассмотрим два подслучая, для [math]C(S \setminus \{j\}) \leqslant r_{j}[/math] и [math]C(S \setminus \{j\}) \gt r_{j}[/math].

  1. В первом случае [math]C(S) = r_{j} + p_{j}[/math]
  2. Во втором работы из [math]C(S \setminus \{j\})[/math] обрабатываются непрерывно в интервале [math][r_{j}, C(S \setminus \{j\})][/math], потому что иначе [math]j[/math] начнет обрабатываться до [math]C(S \setminus \{j\})[/math].

Делаем вывод, что [math]C_{j} (r, w) = \max(r_{j} , C(S \setminus \{j\}) + p_{j}[/math]. Предположим, что [math]C(S \setminus \{j\})[/math] такое, что [math]C(S \setminus \{j\}) = C_{j - 1}(r, w - w_{j})[/math] и, если это не так, заменим [math]C(S \setminus \{j\})[/math] на выполнимое подмножество из [math]1 \ldots j - 1[/math] для которого это выполняется. Из этого следует, что

[math]C_{j}(r, w) = \max(r_{j} , C_{j - 1}(r, w − w_{j})) + p_{j}[/math].

Второй случай

Работа [math]j[/math] начинается перед [math]C(S \setminus \{j\})[/math].

В этом случае существует простой в EDD расписании для множества [math]C(S \setminus \{j\})[/math] после [math]r_{j}[/math]. Пусть [math]S'[/math] — последний блок в [math]C(S \setminus \{j\})[/math], то есть [math]r(S') = \max\{r(B) \mid B [/math] является блоком в [math] C(S \setminus \{j\}) \} [/math]. Тогда [math]r(S') \geqslant r_{j}[/math], в таком случае обязано выполняться равенство [math]C(S') = C_{j - 1}(r(S'), w(s'))[/math], иначе расписание для [math]S[/math] будет не оптимально.

Кроме того, мы можем предположить, что общее количество сделанной работы в [math](S \setminus \{j\}) \setminus S'[/math], лежащих в интервале [math][r_{j}, r(S')][/math], — минимально, учитвая выполнимые множества [math]S \subseteq \{1 \ldots j \}[/math] такие, что [math]r(S'') \geqslant r, C(S'') \leqslant r(S'), w(S'') \geqslant w - w_{j} - w(S')[/math].

Пусть [math]r, r'[/math] — даты появления [math]r \leqslant r_{j} \lt r[/math], и [math]w''[/math] — некоторое целочисленное значение [math]0 \leqslant w'' \lt W[/math]. За [math]P_{j - 1}(r, r', w'')[/math] возьмем минимальное число сделанной работы в итервале [math][r_{j}, r'][/math], учитвая выполнимые множества [math]S \subseteq \{1 \ldots j \}[/math] такие, что [math]r(S'') \geqslant r, C(S'') \leqslant r', w(S'') \geqslant w''[/math]. Если таких выполнимых множеств нет, то [math]P_{j - 1}(r, r', w'') = \infty[/math].

Используя данную запись, количество времен доступнух для обработки работы [math]j[/math] в интервале [math][r_j, r(S')][/math] записывается формулой

[math](r(S') - r_j) - P_{j - 1}(r, r(S'), w - w_j - w(S'))[/math].

Количество готовности работы (какое количество уже сделано) [math]j[/math] после времени

[math]\max(0, p_j - (r(S') - r_j) + P_{j - 1}(r, r(S'), w - w_j - w(S'))[/math].

И время выполнения последней работы [math]j[/math] из [math]S[/math]

[math]C_j(r,w) = \min\limits_{r', w'} \{ C_{j - 1}(r', w') + \max \{ 0, p_j - r' + r_j + P_{j - 1}(r, r', w - w_j - w' \} \}[/math].

Конечная формула

Ассимптотика

Специальные случаи

Источники информации

  • Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 88-93 ISBN 978-3-540-69515-8