Алгоритм Касаи и др. — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 30: Строка 30:
 
}}
 
}}
  
 +
===Пример===
 
[[Файл:kasai.png|400px|thumb|right|Пояснительная картинка к факту 2 и 3]]
 
[[Файл:kasai.png|400px|thumb|right|Пояснительная картинка к факту 2 и 3]]
 
===Пример===
 
 
Рассмотрим строку <tex>S = aabaaca\$</tex>. Её суффиксный массив:
 
Рассмотрим строку <tex>S = aabaaca\$</tex>. Её суффиксный массив:
 
{| class="wikitable"
 
{| class="wikitable"

Версия 13:24, 8 июня 2016

Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка (англ. algorithm of Kasai, Arimura, Arikawa, Lee, Park) — алгоритм, позволяющий за линейное время вычислить длину наибольших общих префиксов (англ. longest common prefix, LCP) для соседних циклических сдвигов строки, отсортированных в лексикографическом порядке.

Обозначения

Задана строка [math]S[/math]. Тогда [math]S_{i}[/math] — суффикс строки [math]S[/math], начинающийся в [math]i[/math]-ом символе. Пусть задан суффиксный массив [math]Suf[/math]. Для вычисления [math]LCP[/math] будем использовать вспомогательный массив [math]Suf^{-1}[/math]. Массив [math]Suf^{-1}[/math] определен как обратный к массиву [math]Suf[/math]. Он может быть получен немедленно, если задан массив [math]Suf[/math]. Если [math]Suf[k] = i[/math], то [math]Suf^{-1}[i] = k[/math].

Пусть [math]\mathrm{Height}[/math] — массив [math]LCP[/math], тогда [math]\mathrm{Height}[i][/math] — длина наибольшего общего префикса [math]i[/math] и [math]i-1[/math] строк в суффиксном массиве ([math]Suf[i][/math] и [math]Suf[i-1][/math] соответственно).

Некоторые свойства [math]LCP[/math]

Факт №1

[math]LCP[/math] между двумя суффиксами — это минимум [math]LCP[/math] всех пар соседних суффиксов между ними в суффиксном массиве [math]Suf[/math]. То есть [math]LCP(S_{Suf[x]}, S_{Suf[z]}) = \min\limits_{x \lt y \leqslant z}LCP(S_{Suf[y - 1]},S_{Suf[y]})[/math]. Отсюда следует, что [math]LCP[/math] пары соседних суффиксов в массиве [math]Suf[/math] больше или равно [math]LCP[/math] пары суффиксов, окружающих их.

Утверждение:
[math]LCP(S_{Suf[y - 1]}, S_{Suf[y]}) \geqslant LCP(S_{Suf[x]},S_{Suf[z]}), x \lt y \leqslant z[/math]

Факт №2

Рассмотрим пару суффиксов, соседних в массиве [math]Suf[/math]. Тогда если их значение [math]LCP[/math] больше [math]1[/math], то можно удалить первый символ этих суффиксов и их лексикографический порядок относительно друг друга сохранится. То есть строка [math]S_{Suf[x] + 1}[/math] будет идти следом за строкой [math]S_{Suf[x-1] + 1}[/math] и останется лексикографически больше нее.

Утверждение:
Если [math]LCP(S_{Suf[x-1]} , S_{Suf[x]}) \gt 1[/math], тогда [math]Suf^{-1}[Suf[x - 1] + 1] \lt Suf^{-1}[Suf[x] + 1][/math]

Факт №3

В этом же случае, значение [math]LCP[/math] между [math]S_{Suf[x-1]+1}[/math] и [math]S_{Suf[x]+1}[/math] на один меньше значения [math]LCP[/math] между [math]S_{Suf[x-1]}[/math] и [math]S_{Suf[x]}[/math].

Утверждение:
Если [math]LCP(S_{Suf[x-1]} , S_{Suf[x]} ) \gt 1[/math], тогда [math]LCP(S_{Suf[x-1]+1} , S_{Suf[x]+1}) = LCP(S_{Suf[x-1]} , S_{Suf[x]} ) - 1[/math]

Пример

Пояснительная картинка к факту 2 и 3

Рассмотрим строку [math]S = aabaaca\$[/math]. Её суффиксный массив:

[math]i[/math] [math]0[/math] [math]1[/math] [math]2[/math] [math]3[/math] [math]4[/math] [math]5[/math] [math]6[/math] [math]7[/math]
[math]Suf[i][/math] [math]7[/math] [math]6[/math] [math]0[/math] [math]3[/math] [math]1[/math] [math]4[/math] [math]2[/math] [math]5[/math]

Распишем суффиксный массив по столбикам для удобного нахождения [math]LCP[/math]:

[math]i[/math] [math]0[/math] [math]1[/math] [math]2[/math] [math]3[/math] [math]4[/math] [math]5[/math] [math]6[/math] [math]7[/math]
[math]Suf[i][/math] [math]7[/math] [math]6[/math] [math]0[/math] [math]3[/math] [math]1[/math] [math]4[/math] [math]2[/math] [math]5[/math]
[math]0[/math] [math]\$[/math] [math]a[/math] [math]a[/math] [math]a[/math] [math]a[/math] [math]a[/math] [math]b[/math] [math]c[/math]
[math]1[/math] [math]\$[/math] [math]a[/math] [math]a[/math] [math]b[/math] [math]c[/math] [math]a[/math] [math]a[/math]
[math]2[/math] [math]b[/math] [math]c[/math] [math]a[/math] [math]a[/math] [math]a[/math] [math]\$[/math]
[math]3[/math] [math]a[/math] [math]a[/math] [math]a[/math] [math]\$[/math] [math]c[/math]
[math]4[/math] [math]a[/math] [math]\$[/math] [math]c[/math] [math]a[/math]
[math]5[/math] [math]c[/math] [math]a[/math] [math]\$[/math]
[math]6[/math] [math]a[/math] [math]\$[/math]
[math]7[/math] [math]\$[/math]

Строим массив [math]LCP[/math]:

[math]i[/math] [math]0[/math] [math]1[/math] [math]2[/math] [math]3[/math] [math]4[/math] [math]5[/math] [math]6[/math] [math]7[/math]
[math]\mathrm{Height}[i][/math] [math]\bot[/math] [math]0[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math]

Например [math]\mathrm{Height}[3] = 2[/math] — это длина наибольшего общего префикса [math]aa[/math] суффиксов [math]S_{Suf[2]} = aabaaca\$[/math] и [math]S_{Suf[3]} = aaca\$[/math]

Вспомогательные утверждения

Теперь рассмотрим следующую задачу: рассчитать [math]LCP[/math] между суффиксом [math]S_{i}[/math] и его соседним суффиксом в массиве [math]Suf[/math], при условии, что значение [math]LCP[/math] между [math]S_{i-1}[/math] и его соседним суффиксом известны. Для удобства записи пусть [math]p=Suf^{-1}[i - 1][/math] и [math]q = Suf^{-1}[i][/math]. Так же пусть [math]j - 1 = Suf[p-1][/math] и [math]k = Suf[q - 1][/math]. Проще говоря, мы хотим посчитать [math]\mathrm{Height}[q][/math], когда задано [math]\mathrm{Height}[p][/math]

Лемма:
Если [math]LCP(S_{j-1}, S_{i-1}) \gt 1[/math], тогда [math]LCP(S_k,S_i) \geqslant LCP(S_j,S_i)[/math]
Доказательство:
[math]\triangleright[/math]
Так как [math]LCP(S_{j-1},S_{i-1}) \gt 1[/math], имеем [math]Suf^{-1}[j] \lt Suf^{-1}[i][/math] из факта №2. Так как [math]Suf^{-1}[j] \leqslant Suf^{-1}[k] = Suf^{-1}[i] - 1[/math], имеем [math]LCP(S_{k} , S_{i}) \geqslant LCP(S_{j} , S_{i})[/math] из факта №1
[math]\triangleleft[/math]
Теорема:
Если [math]\mathrm{Height}[p] = LCP(S_{j-1}, S_{i-1}) \gt 1[/math], то [math]\mathrm{Height}[q] = LCP(S_{k}, S_{i}) \geqslant \mathrm{Height}[p] - 1[/math]
Доказательство:
[math]\triangleright[/math]

[math]LCP(S_{k}, S_{i}) \geqslant LCP(S_{j} , S_{i})[/math] (из леммы)

[math]LCP(S_{j} , S_{i}) = LCP(S_{j-1}, S_{i-1}) - 1[/math] (из факта №3).

Значит, [math]LCP(S_{k}, S_{i}) \geqslant LCP(S_{j-1}, S_{i-1}) - 1[/math]
[math]\triangleleft[/math]

Алгоритм

Представим алгоритм [math]\mathrm{buildLCP}[/math] который вычисляет массив [math]LCP[/math], зная суффиксный массив. Исходя из выше написанной теоремы, нам не нужно сравнивать все символы, когда мы вычисляем [math]LCP[/math] между суффиксом [math]S_{i}[/math] и его соседним суффиксом в массиве [math]Suf^{-1}[/math]. Чтобы вычислить [math]LCP[/math] всех соседних суффиксов в массиве [math]Suf^{-1}[/math] эффективно, будем рассматривать суффиксы по порядку начиная с [math]S_1[/math] и заканчивая [math]S_n[/math].

Псевдокод

Алгоритм принимает на вход строку с добавленным специальным символом [math]\$[/math] и суффиксный массив этой строки, и возвращает массив [math]lcp[/math], такой что [math]lcp[i][/math] содержит длину наибольшего общего префикса строк [math]i[/math] и [math]i-1[/math] в суффиксном массиве.

int[] buildLCP(str: string, suf: int[])  // str — исходная строка с добавленным специальным символом $ 
                                            // suf[] — суффиксный массив строки str  
   int len [math]=[/math] str.length
   int[len] lcp
   int[len] pos                             // pos[] — массив, обратный массиву suf 
   for i = 0 to len - 1
      pos[suf[i]] [math]=[/math] i
   int k [math]=[/math] 0
   for i = 0 to len - 1
      if k > 0
         k--  
      if pos[i] == len - 1
         lcp[len - 1] [math]=[/math] -1
         k [math]=[/math] 0
      else
         int j [math]=[/math] suf[pos[i] + 1]
         while max(i + k, j + k) < len and str[i + k] == str[j + k]
            k++
         lcp[pos[i]] [math]=[/math] k
   return lcp

Асимптотика

Таким образом, начиная проверять [math]LCP[/math] для текущего суффикса не с первого символа, а с указанного, можно за линейное время построить [math]LCP[/math]. Покажем, что построение [math]LCP[/math] таким образом действительно требует [math]O(N)[/math] времени. Действительно, на каждой итерации текущее значение [math]LCP[/math] может быть не более чем на единицу меньше предыдущего. Таким образом, значения [math]LCP[/math] в сумме могут увеличиться не более, чем на [math]2N[/math] (с точностью до константы). Следовательно, алгоритм построит [math]LCP[/math] за [math]O(N)[/math].

См. также

Источники информации