Слово Фибоначчи — различия между версиями
AMaltsev (обсуждение | вклад) м |
AMaltsev (обсуждение | вклад) |
||
Строка 22: | Строка 22: | ||
|statement= Строки Фибоначчи удовлетворяют рекуррентному соотношению <tex>f_n = f_{n-1}f_{n-2}, n \geqslant 2</tex>. | |statement= Строки Фибоначчи удовлетворяют рекуррентному соотношению <tex>f_n = f_{n-1}f_{n-2}, n \geqslant 2</tex>. | ||
|proof= | |proof= | ||
− | Докажем методом математической индукции по <tex>f_n</tex> | + | Докажем методом математической индукции по <tex>f_n</tex>. |
'''База:''' | '''База:''' | ||
Строка 79: | Строка 79: | ||
{{Лемма | {{Лемма | ||
|about = 4 | |about = 4 | ||
− | |statement= Для любого целого <tex>n \geqslant 3</tex> строка <tex>f_n</tex> имеет [[Основные_определения,_связанные_со_строками#border|бордеры]] <tex>f_i</tex> для <tex>i = n-2, n-4,\ldots,2-(n\,\, | + | |statement= Для любого целого <tex>n \geqslant 3</tex> строка <tex>f_n</tex> имеет [[Основные_определения,_связанные_со_строками#border|бордеры]] <tex>f_i</tex> для <tex>i = n-2, n-4,\ldots,2-(n\,\,bmod \,\,2)</tex>. |
|proof= | |proof= | ||
− | Будем последовательно применять лемму 1 | + | Будем последовательно применять лемму 1. |
− | |||
− | + | <tex>f_n=f_{n-1}f_{n-2}=f_{n-2}f_{n-3}f_{n-2}</tex>. Таким образом, <tex>f_{n-2}</tex> является бордером. | |
− | Продолжая выполнять это преобразование, докажем лемму для всех заданных <tex>i</tex> | + | Далее, <tex>f_n=f_{n-3}f_{n-3}f_{n-3}f_{n-4}=f_{n-4}f_{n-5}\ldots f_{n-4} </tex>. Получили, что <tex>f_{n-4}</tex> является бордером. |
+ | |||
+ | Продолжая выполнять это преобразование, докажем лемму для всех заданных <tex>i</tex>. | ||
}} | }} | ||
{{Утверждение | {{Утверждение | ||
|about=2 | |about=2 | ||
|statement= В <tex>f_n(x,y)</tex> не может содержаться подстроки <tex>x^3</tex> или <tex>y^2</tex>. | |statement= В <tex>f_n(x,y)</tex> не может содержаться подстроки <tex>x^3</tex> или <tex>y^2</tex>. | ||
− | |proof = Докажем для <tex>x^3</tex> методом математической индукции по <tex>f_n</tex> | + | |proof = Докажем для <tex>x^3</tex> методом математической индукции по <tex>f_n</tex>. |
− | База: | + | |
+ | '''База''': | ||
*:<tex>f_0=y,f_1=x</tex> не содержат <tex>x^3</tex> | *:<tex>f_0=y,f_1=x</tex> не содержат <tex>x^3</tex> | ||
− | Переход: | + | '''Переход''': |
− | *:Пусть <tex>n \geqslant 2</tex>, тогда <tex>f_n = f_{n-1}f_{n-2}</tex> | + | *:Пусть <tex>n \geqslant 2</tex>, тогда <tex>f_n = f_{n-1}f_{n-2}</tex>. |
− | *:Так как <tex>f_{n-1}</tex> и <tex>f_{n-2}</tex> не содержат <tex>x^3</tex>, то такая кратная строка может появиться только на границе строк <tex>f_{n-1}</tex> и <tex>f_{n-2}</tex> | + | *:Так как <tex>f_{n-1}</tex> и <tex>f_{n-2}</tex> не содержат <tex>x^3</tex>, то такая кратная строка может появиться только на границе строк <tex>f_{n-1}</tex> и <tex>f_{n-2}</tex>. |
*:А <tex>f_{n-2}</tex> равно либо <tex>x</tex>, либо <tex>y</tex>, либо начинается с <tex>xy</tex> (при <tex>n \geqslant 4</tex>) | *:А <tex>f_{n-2}</tex> равно либо <tex>x</tex>, либо <tex>y</tex>, либо начинается с <tex>xy</tex> (при <tex>n \geqslant 4</tex>) | ||
− | *:Таким образом, достаточно доказать, что последние два символа <tex>f_{n-1}</tex> не равны <tex>xx</tex> | + | *:Таким образом, достаточно доказать, что последние два символа <tex>f_{n-1}</tex> не равны <tex>xx</tex>. |
*:Это выполняется согласно лемме 4, по которой либо <tex>xy</tex>, либо <tex>xyx</tex> является бордером (в зависимости от четности длины строки) | *:Это выполняется согласно лемме 4, по которой либо <tex>xy</tex>, либо <tex>xyx</tex> является бордером (в зависимости от четности длины строки) | ||
}} | }} | ||
Строка 111: | Строка 113: | ||
\end{array} | \end{array} | ||
\right. </tex> | \right. </tex> | ||
− | Здесь <tex>\overline{ | + | Здесь <tex>\overline{xx}</tex> обозначает, что после этого вхождения <tex>x</tex> в строке следует <tex>x</tex> |
}} | }} | ||
Строка 140: | Строка 142: | ||
* [[Слово Туэ-Морса]] | * [[Слово Туэ-Морса]] | ||
− | == Источники == | + | == Источники информации== |
* Билл Смит «Методы и алгоритмы вычислений на строках» {{---}} издательство «Вильямс» {{---}} 2006 {{---}} стр. 100-107 | * Билл Смит «Методы и алгоритмы вычислений на строках» {{---}} издательство «Вильямс» {{---}} 2006 {{---}} стр. 100-107 | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Основные определения. Простые комбинаторные свойства слов]] | [[Категория:Основные определения. Простые комбинаторные свойства слов]] |
Версия 02:10, 9 июня 2016
Определение: |
Строками Фибоначчи (англ. Fibostring) называются строки над алфавитом | , полученные последовательным применением морфизма :
Содержание
Примеры
Первые несколько строк Фибоначчи:
Рекуррентное соотношение для строк Фибоначчи
Лемма (1): |
Строки Фибоначчи удовлетворяют рекуррентному соотношению . |
Доказательство: |
Докажем методом математической индукции по .База:
Переход:
|
Также можно заметить, что длины строк Фибоначчи совпадают с числами Фибоначчи.
Свойства строк Фибоначчи
Определение: |
Определим бесконечную обобщенную строку Фибоначчи | (англ. generalized infinite Fibostring) как строку, содержащую все строки в качестве префиксов.
Лемма (2): |
Для любого целого выполняется . |
Доказательство: |
Так как , то . |
Например:
.Это равенство работает также для
.Утверждение (1): |
Для любого целого выполняется . |
Докажем это утверждение методом математической индукции. База. Переход.
|
Лемма (3): |
Для любого целого выполняется равенство . |
Доказательство: |
. |
Лемма (4): |
Для любого целого бордеры для . строка имеет |
Доказательство: |
Будем последовательно применять лемму 1. . Таким образом, является бордером. Далее, Продолжая выполнять это преобразование, докажем лемму для всех заданных . Получили, что является бордером. . |
Утверждение (2): |
В не может содержаться подстроки или . |
Докажем для методом математической индукции по .База:
Переход:
|
Обратный морфизм
Определение: |
Обратный морфизм
| определяется как отображение:
Обратный морфизм позволяет из строки
получить строку .Пример:
- .
- Будем последовательно применять морфизм:
- Префикс переходит в , центральный переходит в , а суффикс также переходит в .
- Получили .
Связь с задачей о построении исключений
Утверждение (3): |
Для любого целого содержит куб некоторой подстроки. |
Строка | содержит подстроку и является префиксом для .
Теорема (1): |
Никакая строка не содержит подстроки кратности . |
Утверждение (4): |
Бесконечная строка Фибоначчи задачи построения -исключения является решением |
Это следует из утверждения и теоремы выше. |
См. также
Источники информации
- Билл Смит «Методы и алгоритмы вычислений на строках» — издательство «Вильямс» — 2006 — стр. 100-107