Фундаментальные циклы графа — различия между версиями
(→Литература) |
|||
Строка 15: | Строка 15: | ||
}} | }} | ||
− | == | + | ==Источники информации== |
− | Харари | + | * Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6 |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Основные определения теории графов]] | [[Категория: Основные определения теории графов]] |
Версия 11:20, 16 октября 2016
Рассмотрим остов
графа . — все ребра графа , которые не входят в остов . При добавлении образуется простой цикл . Семейство циклов называется фундаментальными циклами графа относительно остова .
Свойства
Теорема: |
Множество всех фундаментальных циклов относительно любого остова графа образует базис циклического пространства этого графа. |
Доказательство: |
Рассмотрим остов Докажем, что любой цикл из циклического пространства графа графа и фундаментальные циклы относительно остова . В каждом цикле есть ребро , которое принадлежит ровно одному из . Поэтому сумма различных фундаментальных циклов относительно остова не является пустым графом, из чего следует, что линейно независимы. является суммой фундаментальных циклов. Пусть — цикл циклического пространства графа , ребра принадлежащие и не принадлежащие . Рассмотрим граф . Каждое из ребер встречается ровно в двух слагаемых — и . Значит содержит только ребра из . Так как простые циклы, то степени всех их вершин четны, степени вершин тоже четны по лемме, значит степени всех вершин четны. Если непустой граф, то в есть цикл, значит цикл есть и в . Значит пустой граф, откуда следует что . |
Источники информации
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6