Примитивно рекурсивные функции — различия между версиями
ExileHell (обсуждение | вклад) (→Примитивно рекурсивные функции) |
ExileHell (обсуждение | вклад) (→Примитивно рекурсивные функции) |
||
Строка 70: | Строка 70: | ||
<tex> \textbf 0^{n}(x_1,\ldots,x_{n-1},y+1) = \mathrm{h}(x_1,\ldots,x_{n-1},\textbf 0^{n}(y)) </tex>, где <tex> \mathrm{h}(x_1,\ldots, x_n,y) = y </tex> | <tex> \textbf 0^{n}(x_1,\ldots,x_{n-1},y+1) = \mathrm{h}(x_1,\ldots,x_{n-1},\textbf 0^{n}(y)) </tex>, где <tex> \mathrm{h}(x_1,\ldots, x_n,y) = y </tex> | ||
− | Константа <tex> \textbf M </tex> равна <tex> \mathrm{ | + | Константа <tex> \textbf M </tex> равна <tex> \mathrm{N}(\textbf{M-1}) </tex> |
<tex> \textbf M^n </tex> {{---}} <tex>n</tex>-местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом. | <tex> \textbf M^n </tex> {{---}} <tex>n</tex>-местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом. | ||
Строка 77: | Строка 77: | ||
<tex> \mathrm{sum}(x,0) = x </tex> | <tex> \mathrm{sum}(x,0) = x </tex> | ||
− | <tex> \mathrm{sum}(x,y+1) = \mathrm{h}(x,y,\mathrm{sum}(x,y)) </tex> , где <tex> \mathrm{h}(x,y,z)=\mathrm{ | + | <tex> \mathrm{sum}(x,y+1) = \mathrm{h}(x,y,\mathrm{sum}(x,y)) </tex> , где <tex> \mathrm{h}(x,y,z)=\mathrm{N}(z) </tex> |
===== Умножения ===== | ===== Умножения ===== | ||
Строка 108: | Строка 108: | ||
Сначала выразим <tex> \mathrm{eq_{0}}(x) = \mathrm{eq}(x,0) </tex> | Сначала выразим <tex> \mathrm{eq_{0}}(x) = \mathrm{eq}(x,0) </tex> | ||
− | <tex> \mathrm{eq_0}(0) =\mathrm{ | + | <tex> \mathrm{eq_0}(0) =\mathrm{N}(0) </tex> |
<tex> \mathrm{eq_0}(y+1) = \mathrm{h}(y,\mathrm{eq}(y)) </tex> , где <tex> \mathrm{h}(y,\mathrm{eq}(y)) = \textbf 0^2(x,y) </tex> | <tex> \mathrm{eq_0}(y+1) = \mathrm{h}(y,\mathrm{eq}(y)) </tex> , где <tex> \mathrm{h}(y,\mathrm{eq}(y)) = \textbf 0^2(x,y) </tex> | ||
Строка 118: | Строка 118: | ||
<tex> \mathrm{eq}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(y,x)) </tex> | <tex> \mathrm{eq}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(y,x)) </tex> | ||
− | <tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{ | + | <tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{N}(x),y)) </tex> |
===== IF ===== | ===== IF ===== | ||
Строка 133: | Строка 133: | ||
<tex> \mathrm{divmax}(x+1,y) = \mathrm{h}(x,y,\mathrm{divmax}(x,y)) </tex>, | <tex> \mathrm{divmax}(x+1,y) = \mathrm{h}(x,y,\mathrm{divmax}(x,y)) </tex>, | ||
− | где <tex> \mathrm{h}(x,y,z) = \mathrm{if}(\mathrm{eq}(\mathrm{sub}(\mathrm{ | + | где <tex> \mathrm{h}(x,y,z) = \mathrm{if}(\mathrm{eq}(\mathrm{sub}(\mathrm{N}(x),z),y),\mathrm{N}(x),z) </tex>, |
или не формально если <tex> x+1 - y = z </tex> то <tex> \mathrm{h}(x,y,z) = x+1 </tex>, иначе <tex> \mathrm{h}(x,y,z) = z </tex> | или не формально если <tex> x+1 - y = z </tex> то <tex> \mathrm{h}(x,y,z) = x+1 </tex>, иначе <tex> \mathrm{h}(x,y,z) = z </tex> | ||
Строка 141: | Строка 141: | ||
<tex> \mathrm{divide}(0,y) =\textbf 0^{1} </tex> | <tex> \mathrm{divide}(0,y) =\textbf 0^{1} </tex> | ||
− | <tex> \mathrm{divide}(x,y) = \mathrm{h}(x,y,\mathrm{divide}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z) = \mathrm{sum}(z,\mathrm{eq}(\mathrm{ | + | <tex> \mathrm{divide}(x,y) = \mathrm{h}(x,y,\mathrm{divide}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z) = \mathrm{sum}(z,\mathrm{eq}(\mathrm{N}(x),\mathrm{divmax}(\mathrm{N}(x),y))) </tex> |
или не формально если <tex> x+1~\vdots~y </tex>, то <tex> \mathrm{h}(x,y,z) = z+1 </tex>, иначе <tex> \mathrm{h}(x,y,z) = z </tex> | или не формально если <tex> x+1~\vdots~y </tex>, то <tex> \mathrm{h}(x,y,z) = z+1 </tex>, иначе <tex> \mathrm{h}(x,y,z) = z </tex> |
Версия 19:24, 27 ноября 2016
Содержание
Рекурсивные функции
Рассмотрим примитивы, из которых будем собирать выражения:
- — ноль.
- .
- Проекция.
- Подстановка.
- Примитивная рекурсия.
- Минимизация.
,
, , где .
,
Если
и , то . При этомЕсли
и , то , при этомЕсли
, то , при этом — такое минимальное число , что . Если такого нет, результат данного примитива неопределен.Определение: |
Если некоторая функция | может быть задана с помощью данных примитивов, то она называется рекурсивной.
Примитивно рекурсивные функции
Определение: |
Примитивно рекурсивными называют функции, которые можно получить с помощью правил подстановки и рекурсии из константной функции | , функции и набора функций где .
Заметим, что если
— -местная примитивно рекурсивная функция, то она определена на всем множестве , так как получается путем правил преобразования из всюду определенных функций, и правила преобразования не портят всюду определенность. Говоря неформальным языком, рекурсивные функции напоминают программы, у которых при любых входных данных все циклы и рекурсий завершатся за конечное время.Благодаря проекторам мы можем делать следующие преобразования:
- В правиле подстановки можно использовать функции с разным числом аргументов. Например, подстановка эквивалентна , но если не константная функция то все подставляемые функции должны иметь хотя бы один аргумент.
- В рекурсии не обязательно вести индукцию по последнему аргументу. Следует из того что мы можем с помощью проекторов поставить требуемый аргумент на последнее место.
В дальнейшем вместо
будем писать просто , подразумевая требуемое нам .Арифметические операции на примитивно рекурсивных функциях
n-местный ноль
— функция нуля аргументов.
Выразим сначала
, где
Теперь выразим
, где
Константа
равна— -местная константа, получается аналогичным к образом.
Сложение
, где
Умножения
, где
Вычитания
Если
, то , иначе .Рассмотрим сначала вычитания единицы
, где
Теперь рассмотрим
, где
Операции сравнения
если , иначе
если , иначе
если , иначе
Сначала выразим
, где
Теперь все остальные функции
IF
, где
Деление
, если . Если же , то и все связанные с делением функции равны каким то ,не интересными для нас, числами.
Сначала определим
— функция равна максимальному числу меньшему или равному , которое нацело делится на .
, где ,
или не формально если
то , иначеТеперь само деления
, где
или не формально если
, то , иначеОстаток от деления выражается так:
Работа со списками фиксированной длины
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск
- ого простого числа. Рассмотрим список из натуральны чисел , тогда ему в соответствия можно поставить число , где -тое простое число. Как видно из представления,создания списка, взятие - того элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел.Теорема о примитивной рекурсивности вычислимых функций
Теорема: |
Если для вычислимой функции существует примитивно рекурсивная функция , такая что для любых аргументов максимальное количество шагов, за которое будет посчитана на МТ равно , то примитивно рекурсивная функция. |
Доказательство: |
Каждому состоянию МТ поставим в соответствие список из четырех чисел , где: МТ слева от головки ленты, представлено в виде числа в системы счисления с основанием равным алфавиту МТ. Младшие разряды находятся возле головки. Пробелу соответствует ноль, чтобы число было конечным. — состояниеМТ справа от головки, представлено аналогично только возле головки МТ находятся старшие разряды. — состояние— номер текущего состояния — символ на который указывает головка ленты. Тогда всем переходам соответствует функция МТ и возвращающая новое состояние. Покажем что она примитивно рекурсивная . При применении перехода в записывается новый символ,затем из-за сдвига головки в и в конец добавляется новая цифра или удаляется старая, затем в записываетcя символ после сдвига, и в конце перехода в записывается новое состояние автомата. Операции добавления в конец цифры или удаления последней цифры легко выражаются через простые арифметические операции, следовательно они примитивно рекурсивные. Все остальные операции являются простыми операциями над списками, а значит они тоже примитивно рекурсивные. Из этого следует что применения перехода — примитивно рекурсивная функция. В силу того что нужный переход можно выбрать используя конечное число функций следует что и также является примитивно рекурсивной функцией. принимающая состояниеФункции преобразование аргументов в формат входных данных для МТ и получения ответа по состоянию МТ также выражаются через простые арифметические операции а значит они примитивно рекурсивные. Назовем их и . Рассмотрим функцию двух аргументов МТ , число шагов и возвращает состояние МТ после шагов. Покажем что — примитивно рекурсивная функция. которая принимает состояние
Вместо , где подставим и в итоге получим что — примитивно рекурсивная функция. |
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., испр., М.: МЦНМО, 2012
- Рекурсивные функции на википедии