Монотонный код Грея — различия между версиями
Gpevnev (обсуждение | вклад) м |
Gpevnev (обсуждение | вклад) м |
||
Строка 18: | Строка 18: | ||
для <tex>0 \leqslant i \leqslant n</tex>. Для всех уровней выполняется соотношение <tex>|V_n(i)| = C_n^i</tex>. | для <tex>0 \leqslant i \leqslant n</tex>. Для всех уровней выполняется соотношение <tex>|V_n(i)| = C_n^i</tex>. | ||
− | Пусть <tex>Q_n(i)</tex> подграф <tex>Q_n</tex>, который является | + | Пусть <tex>Q_n(i)</tex> подграф <tex>Q_n</tex>, который является объединением двух смежных уровней, т. е. <tex>V_n(i) \cup V_n(i+1)</tex>, и пусть <tex>E_n(i)</tex> множество граней <tex>Q_n(i)</tex>. |
Тогда монотонным кодом Грея будет являтся [[:Гамильтоновы_графы|Гамильтонов путь]] в <tex>Q_n</tex>, при котором любое множество вершин <tex>\delta_1 , \delta_2</tex> такие, что <tex>\forall i, j : i \leqslant j</tex>, то <tex>\delta_1 \in E_n(i)</tex> идет перед <tex>\delta_2 \in E_n(j)</tex>. | Тогда монотонным кодом Грея будет являтся [[:Гамильтоновы_графы|Гамильтонов путь]] в <tex>Q_n</tex>, при котором любое множество вершин <tex>\delta_1 , \delta_2</tex> такие, что <tex>\forall i, j : i \leqslant j</tex>, то <tex>\delta_1 \in E_n(i)</tex> идет перед <tex>\delta_2 \in E_n(j)</tex>. | ||
Ниже на катринке Гамильтонов путь в гиперкубе <tex>Q_4</tex> для <tex>n = 4</tex>, построенный по алгоритму Саважа-Винклера (англ. ''Savage-Winkler'').<ref>[http://www.sciencedirect.com/science/article/pii/0097316595900918 C. D Savage and P. Winkler (1995). "Monotone Gray codes and the middle levels problem"page 14]</ref> | Ниже на катринке Гамильтонов путь в гиперкубе <tex>Q_4</tex> для <tex>n = 4</tex>, построенный по алгоритму Саважа-Винклера (англ. ''Savage-Winkler'').<ref>[http://www.sciencedirect.com/science/article/pii/0097316595900918 C. D Savage and P. Winkler (1995). "Monotone Gray codes and the middle levels problem"page 14]</ref> | ||
− | [[Файл:Monotonic_Gray_Code_Graph.png|center|4-ичный | + | [[Файл:Monotonic_Gray_Code_Graph.png|center|4-ичный монотонный код Грея]] |
− | Элегантная идея построения <tex>n</tex>-ичного монотонного кода Грея состоит в том, чтобы рекурсивно строить подпути <tex>P_{n,j}</tex> длинны <tex> | + | Элегантная идея построения <tex>n</tex>-ичного монотонного кода Грея состоит в том, чтобы рекурсивно строить подпути <tex>P_{n,j}</tex> длинны <tex>2C_n^j</tex> включающих вершины <tex>E_n(j)</tex>. |
− | Определим <tex>P_{1,0} = (0, 1)</tex> и <tex>P_{n,j} = \emptyset</tex>, когда <tex>j < 0</tex> или <tex>j \ | + | Определим <tex>P_{1,0} = (0, 1)</tex> и <tex>P_{n,j} = \emptyset</tex>, когда <tex>j < 0</tex> или <tex>j \geqslant n</tex> и |
<tex> | <tex> | ||
P_{n+1,j} = 1P^{\pi_n}_{n,j-1}, 0P_{n,j} | P_{n+1,j} = 1P^{\pi_n}_{n,j-1}, 0P_{n,j} | ||
− | </tex>. | + | </tex>. То есть P_{n+1, j} это объединение множеств P^{\pi_n}_{n,j-1} с приписанной в начале 1 и P_{n,j} с приписанными в начале нулем. |
Здесь <tex>\pi_n</tex> это определенная перестановка элементов множества к которому она применена, а <tex>P^{\pi}</tex> это путь <tex>P</tex> к котрому была применена пересатновка <tex>\pi</tex>. | Здесь <tex>\pi_n</tex> это определенная перестановка элементов множества к которому она применена, а <tex>P^{\pi}</tex> это путь <tex>P</tex> к котрому была применена пересатновка <tex>\pi</tex>. | ||
− | Существует два варианта построить | + | Существует два варианта построить монотонный код грея по путям <tex>P_{n, j}</tex>. |
Назовем их <tex>G_n^{(1)}</tex> и <tex>G_n^{(2)}</tex>. Будем строить их таким образом: | Назовем их <tex>G_n^{(1)}</tex> и <tex>G_n^{(2)}</tex>. Будем строить их таким образом: |
Версия 22:57, 6 декабря 2016
Определение: |
Монотонный код Грея (англ. Monotonic Gray Code) — способ построения кода Грея, при котором | , что содержит на или больше единиц, чем .
Монотонный код Грея преимущественно используется в теории связанных сетей, например для минимизации ожидания линейным массивом процессоров.[1]
Содержание
Алгоритм построения
Для начала определим такое понятие, как вес двоичного кода, им будет являтся количество код Грея в котором бы вес всегда возрастал. Неплохим решением этой проблемы будет обход всех кодов со смежными с данным весами.
в данном двоичном коде. Очевидно, что нельзя построитьМы можем формализовать модель монотонных кодов Грея рассматривая разбиение гиперкуба
, вершины в котором являются двоичными кодами, на уровни с одинаковым весом вершин.
для
. Для всех уровней выполняется соотношение .Пусть Гамильтонов путь в , при котором любое множество вершин такие, что , то идет перед .
подграф , который является объединением двух смежных уровней, т. е. , и пусть множество граней . Тогда монотонным кодом Грея будет являтсяНиже на катринке Гамильтонов путь в гиперкубе [2]
для , построенный по алгоритму Саважа-Винклера (англ. Savage-Winkler).Элегантная идея построения
-ичного монотонного кода Грея состоит в том, чтобы рекурсивно строить подпути длинны включающих вершины .Определим
и , когда или и . То есть P_{n+1, j} это объединение множеств P^{\pi_n}_{n,j-1} с приписанной в начале 1 и P_{n,j} с приписанными в начале нулем.Здесь
это определенная перестановка элементов множества к которому она применена, а это путь к котрому была применена пересатновка . Существует два варианта построить монотонный код грея по путям .Назовем их
и . Будем строить их таким образом:Выбор перестановки
обусловлен тем, чтобы получившиеся коды соответсвовали требованиям кода Грея и поэтому эта перестановка равна .Чтобы лучше разобратся в том, как сторится этот код и работает перестановка
следует рассмотреть таблицу ниже.Монотонный код Грея может быть эффективно сгенерирован по этому алгоритму за время
. Легче всего написать этот алгоритм используя сопрограмму.Псевдокод
rotateRight(x, n): // Вспомогательная функция для генерации перестановки, циклически сдвигает битовый вектор направораз. Принимает и возвращает котреж (англ. tuple). Кортеж аналог списка, но в кортеже нельзя менять элементы, можно только добавлять. return x[-n:] + x[:-n] pi(n): // Рекурсивная генерация -ой перестановки. Возвращает перестановку в виде кортежа. Если n становится меньше дописывает в начало кортежа и возвращает его. if n <= 1: return (0,) x = pi(n - 1) + (n - 1,) return rotate_right(tuple(x[k] for k in x), 1) p(n, j, reverse = false): // Рекурсивная генерация пути . Принимает , а так же дополнительный параметр определяющий надо-ли переворачивать кортеж. if n == 1 and j == 0: if not reverse: yield (0,) yield (1,) else: yield (1,) yield (0,) elif j >= 0 and j < n: perm = pi(n - 1) if not reverse: for x in p(n - 1, j - 1): yield (1,) + tuple(x[k] for k in perm) for x in p(n - 1, j): yield (0,) + x else: for x in p(n - 1, j, reverse=True): yield (0,) + x for x in p(n - 1, j - 1, reverse=True): yield (1,) + tuple(x[k] for k in perm) monotonic(n): // Генерация монотонного кода Грея при помощи уже написанной сопрограммы p. for i in range(n): for x in (p(n, i) if i % 2 == 0 else p(n, i, reverse=True)): yield x
|
Визуализация работы алгоритма
Для
Для