Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) |
Анна (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
+ | == Примеры доказательств == | ||
+ | === Язык <tex>half(L)</tex> === | ||
{{Определение | {{Определение | ||
|definition = Определим <tex>half(L)</tex> как множество первых половин цепочек языка <tex>L</tex>, то есть множество <tex>\{ w \mid </tex> существует <tex>x</tex>, для которой <tex>wx \in L</tex>, причем <tex>|w| = |x| \}</tex>. }} | |definition = Определим <tex>half(L)</tex> как множество первых половин цепочек языка <tex>L</tex>, то есть множество <tex>\{ w \mid </tex> существует <tex>x</tex>, для которой <tex>wx \in L</tex>, причем <tex>|w| = |x| \}</tex>. }} | ||
Например, если <tex>L = \{ \varepsilon, 0010, 011, 010110 \}</tex>, то <tex>half(L) = \{ \varepsilon, 00, 010 \}</tex>. Заметим, что цепочки нечетной длины не влияют на <tex>half(L)</tex>. | Например, если <tex>L = \{ \varepsilon, 0010, 011, 010110 \}</tex>, то <tex>half(L) = \{ \varepsilon, 00, 010 \}</tex>. Заметим, что цепочки нечетной длины не влияют на <tex>half(L)</tex>. | ||
− | |||
− | |||
− | |||
{{Утверждение | {{Утверждение | ||
Строка 16: | Строка 15: | ||
Теперь по индукции не сложно доказать, что <tex>\delta'(q_0', x) = (\delta(q_0, x), S_n)</tex>, где <tex>|x| = n</tex>. По определению множества терминальных вершин, автомат <tex>M'</tex> допускает строку <tex>x</tex> тогда и только тогда, когда <tex>\delta(q_0, x) \in S_n</tex>. Следовательно, автомат <tex>M'</tex> допускает язык <tex>half(L)</tex>.Таким образом, мы построили ДКА, который допускает язык <tex>half(L)</tex>. Следовательно, данный язык является регулярным. | Теперь по индукции не сложно доказать, что <tex>\delta'(q_0', x) = (\delta(q_0, x), S_n)</tex>, где <tex>|x| = n</tex>. По определению множества терминальных вершин, автомат <tex>M'</tex> допускает строку <tex>x</tex> тогда и только тогда, когда <tex>\delta(q_0, x) \in S_n</tex>. Следовательно, автомат <tex>M'</tex> допускает язык <tex>half(L)</tex>.Таким образом, мы построили ДКА, который допускает язык <tex>half(L)</tex>. Следовательно, данный язык является регулярным. | ||
}} | }} | ||
+ | === Язык <tex>alt(L, M)</tex> === | ||
+ | {{Определение | ||
+ | |definition = Пусть <tex>w = w_1 w_2 \dots w_n</tex> и <tex>x = x_1 x_2 \dots x_n</tex>. Определим <tex>alt(w, x) = w_1 x_1 w_2 x_2 \dots w_n x_n</tex>. Распространим это определение на языки следующим образом: пусть <tex>L</tex> и <tex>M</tex> {{---}} два языка над одним алфавитом <tex>\Sigma</tex>. Тогда <tex>alt(L, M) = \{ alt(w, x) \mid |w| = |x|, w \in L, x \in M \}</tex>.}} | ||
{{Утверждение | {{Утверждение | ||
|id = st4 | |id = st4 | ||
+ | |statement = Пусть <tex>L</tex> и <tex>M</tex> {{---}} регулярные языки. Тогда <tex>alt(L, M)</tex> также является регулярным. | ||
+ | |proof = Так как <tex>L</tex> и <tex>M</tex> {{---}} регулярные языки, то существуют ДКА <tex>D_L = \langle \Sigma , Q_L , q_{0L} , F_L , \delta_L \rangle </tex>, распознающий язык <tex>L</tex>, и <tex>D_M = \langle \Sigma , Q_M , q_{0M} , F_M , \delta_M \rangle </tex>, распознающий <tex>M</tex>. | ||
+ | }} | ||
+ | === Язык <tex>cycle(L)</tex> === | ||
+ | {{Определение | ||
+ | |definition = Определим <tex>cycle(L)</tex> как множество <tex>\{ w \mid </tex> цепочку <tex>w</tex> можно представить в виде <tex>w = xy</tex>, где <tex>yx \in L \}</tex>. }} | ||
+ | Например, если <tex>L = \{ 01, 011 \}</tex>, то <tex>cycle(L) = \{ 01, 10, 011, 110, 101 \}</tex>. | ||
+ | |||
+ | {{Утверждение | ||
+ | |id = st5 | ||
|statement = | |statement = | ||
Пусть <tex>L</tex> {{---}} регулярный язык. Тогда язык <tex>cycle(L)</tex> также регулярен. | Пусть <tex>L</tex> {{---}} регулярный язык. Тогда язык <tex>cycle(L)</tex> также регулярен. | ||
|proof = | |proof = | ||
− | [[Файл:Enfa_before.jpg| | + | [[Файл:Enfa_before.jpg|right|thumb|380px|Рис. 1. Разбиение автомата.]] |
− | [[Файл:Enfa-after.jpg|right|thumb| | + | [[Файл:Enfa-after.jpg|right|thumb|380px|Рис. 2. Перестроение.]] |
Так как <tex>L</tex> {{---}} регулярный язык, то существует допускающий его ДКА <tex>M = \langle \Sigma , Q , q_0 , F , \delta \rangle </tex>. Построим из <tex>M</tex> недетерминированный автомат с <tex>\varepsilon-</tex>переходами следующим образом: рассмотрим состояние <tex>q \in Q</tex>, из которого есть переходы в другие состояния (то есть начиная с <tex>q</tex> можно построить непустое слово, заканчивающееся в терминальной вершине). Тогда если какое-то слово проходит через это состояние, оно может быть зациклено таким образом, что его суффикс, начинающийся с <tex>q</tex>, станет префиксом нового слова, а префикс, заканчивающийся в <tex>q</tex> {{---}} суффиксом. Разделим автомат на две части <tex>A_1</tex> и <tex>A_2</tex> такие, что <tex>A_1</tex> будет содержать все вершины, из которых достижима <tex>q</tex>, а <tex>A_2</tex> {{---}} все вершины, которые достижимы из <tex>q</tex> (см. рис. 1). Заметим, что каждая вершина может содержаться в обеих частях одновременно, такое может случиться, если автомат <tex>M</tex> содержит циклы. Теперь перестроим автомат так, что он будет принимать слова "зацикленные" вокруг <tex>q</tex>, то есть начинающиеся с <tex>q</tex> и после достижения терминальной вершины продолжающиеся с <tex>q_0</tex> (см. рис. 2). Для этого стартовой вершиной сделаем <tex>q</tex> и построим от нее часть <tex>A_2</tex>. Теперь добавим состояние <tex>q_0</tex> и соединим с ним все терминальные состояния из <tex>A_2</tex> с помощью <tex>\varepsilon-</tex>переходов. Далее построим от <tex>q_0</tex> часть <tex>A_1</tex>. Добавим вершину <tex>q'</tex>, эквивалентную <tex>q</tex>, и сделаем ее терминальной. Данный автомат принимает слова, зацикленные вокруг выбранной вершины <tex>q</tex>. Мы хотим, чтобы автомат принимал слова, зацикленные вокруг любой такой <tex>q</tex>. Для этого создадим новую стартовую вершину <tex>q_0'</tex> и свяжем ее <tex>\varepsilon-</tex>переходами со всеми перестроенными автоматами (зацикленными вокруг всех подходящих <tex>q</tex>), в том числе и с изначальным автоматом. Построенный автомат допускает язык <tex>cycle(L)</tex>, следовательно, данный язык является регулярным. | Так как <tex>L</tex> {{---}} регулярный язык, то существует допускающий его ДКА <tex>M = \langle \Sigma , Q , q_0 , F , \delta \rangle </tex>. Построим из <tex>M</tex> недетерминированный автомат с <tex>\varepsilon-</tex>переходами следующим образом: рассмотрим состояние <tex>q \in Q</tex>, из которого есть переходы в другие состояния (то есть начиная с <tex>q</tex> можно построить непустое слово, заканчивающееся в терминальной вершине). Тогда если какое-то слово проходит через это состояние, оно может быть зациклено таким образом, что его суффикс, начинающийся с <tex>q</tex>, станет префиксом нового слова, а префикс, заканчивающийся в <tex>q</tex> {{---}} суффиксом. Разделим автомат на две части <tex>A_1</tex> и <tex>A_2</tex> такие, что <tex>A_1</tex> будет содержать все вершины, из которых достижима <tex>q</tex>, а <tex>A_2</tex> {{---}} все вершины, которые достижимы из <tex>q</tex> (см. рис. 1). Заметим, что каждая вершина может содержаться в обеих частях одновременно, такое может случиться, если автомат <tex>M</tex> содержит циклы. Теперь перестроим автомат так, что он будет принимать слова "зацикленные" вокруг <tex>q</tex>, то есть начинающиеся с <tex>q</tex> и после достижения терминальной вершины продолжающиеся с <tex>q_0</tex> (см. рис. 2). Для этого стартовой вершиной сделаем <tex>q</tex> и построим от нее часть <tex>A_2</tex>. Теперь добавим состояние <tex>q_0</tex> и соединим с ним все терминальные состояния из <tex>A_2</tex> с помощью <tex>\varepsilon-</tex>переходов. Далее построим от <tex>q_0</tex> часть <tex>A_1</tex>. Добавим вершину <tex>q'</tex>, эквивалентную <tex>q</tex>, и сделаем ее терминальной. Данный автомат принимает слова, зацикленные вокруг выбранной вершины <tex>q</tex>. Мы хотим, чтобы автомат принимал слова, зацикленные вокруг любой такой <tex>q</tex>. Для этого создадим новую стартовую вершину <tex>q_0'</tex> и свяжем ее <tex>\varepsilon-</tex>переходами со всеми перестроенными автоматами (зацикленными вокруг всех подходящих <tex>q</tex>), в том числе и с изначальным автоматом. Построенный автомат допускает язык <tex>cycle(L)</tex>, следовательно, данный язык является регулярным. | ||
}} | }} | ||
− | [[Файл:Ex_1_before.jpg|left|thumb| | + | [[Файл:Ex_1_before.jpg|left|thumb|260px|Рис. 3. Автомат, принимающий язык <tex>L</tex>.]] |
− | [[Файл:Ex_1_after.jpg|right|thumb| | + | [[Файл:Ex_1_after.jpg|right|thumb|380px|Рис. 4. Автомат, принимающий язык <tex>cycle(L)</tex>.]] |
Для лучшего понимания алгоритма перестроения автомата рассмотрим пример.<br> | Для лучшего понимания алгоритма перестроения автомата рассмотрим пример.<br> | ||
На рис. 3 представлен автомат, допускающий язык <tex>L = \{ ab, abb, ac \}</tex>. На рис. 4 показано, как этот автомат был перестроен. Были добавлены части, зацикленные относительно вершин <tex>2</tex> и <tex>3</tex>. Появилась новая стартовая вершина <tex>0</tex>, которая связана <tex>\varepsilon-</tex>переходами с изначальным автоматом и его измененными версиями. Данный автомат распознает язык <tex>cycle(L) = \{ ab, abb, ac, ba, bba, ca, bab \}</tex>: первые три слова распознает первая часть, которая совпадает с изначальным автоматом; следующие три {{---}} вторая, перестроенная относительно вершины <tex>2</tex>; последнее слово распознает третья часть, зацикленная относительно вершины <tex>3</tex>. | На рис. 3 представлен автомат, допускающий язык <tex>L = \{ ab, abb, ac \}</tex>. На рис. 4 показано, как этот автомат был перестроен. Были добавлены части, зацикленные относительно вершин <tex>2</tex> и <tex>3</tex>. Появилась новая стартовая вершина <tex>0</tex>, которая связана <tex>\varepsilon-</tex>переходами с изначальным автоматом и его измененными версиями. Данный автомат распознает язык <tex>cycle(L) = \{ ab, abb, ac, ba, bba, ca, bab \}</tex>: первые три слова распознает первая часть, которая совпадает с изначальным автоматом; следующие три {{---}} вторая, перестроенная относительно вершины <tex>2</tex>; последнее слово распознает третья часть, зацикленная относительно вершины <tex>3</tex>. |
Версия 11:32, 15 декабря 2016
Содержание
Примеры доказательств
Язык
Определение: |
Определим | как множество первых половин цепочек языка , то есть множество существует , для которой , причем .
Например, если
, то . Заметим, что цепочки нечетной длины не влияют на .Утверждение: |
Пусть — регулярный язык. Тогда язык также регулярен. |
Так как |
Язык
Определение: |
Пусть | и . Определим . Распространим это определение на языки следующим образом: пусть и — два языка над одним алфавитом . Тогда .
Утверждение: |
Пусть и — регулярные языки. Тогда также является регулярным. |
Так как | и — регулярные языки, то существуют ДКА , распознающий язык , и , распознающий .
Язык
Определение: |
Определим | как множество цепочку можно представить в виде , где .
Например, если
, то .Утверждение: |
Пусть — регулярный язык. Тогда язык также регулярен. |
Так как — регулярный язык, то существует допускающий его ДКА . Построим из недетерминированный автомат с переходами следующим образом: рассмотрим состояние , из которого есть переходы в другие состояния (то есть начиная с можно построить непустое слово, заканчивающееся в терминальной вершине). Тогда если какое-то слово проходит через это состояние, оно может быть зациклено таким образом, что его суффикс, начинающийся с , станет префиксом нового слова, а префикс, заканчивающийся в — суффиксом. Разделим автомат на две части и такие, что будет содержать все вершины, из которых достижима , а — все вершины, которые достижимы из (см. рис. 1). Заметим, что каждая вершина может содержаться в обеих частях одновременно, такое может случиться, если автомат содержит циклы. Теперь перестроим автомат так, что он будет принимать слова "зацикленные" вокруг , то есть начинающиеся с и после достижения терминальной вершины продолжающиеся с (см. рис. 2). Для этого стартовой вершиной сделаем и построим от нее часть . Теперь добавим состояние и соединим с ним все терминальные состояния из с помощью переходов. Далее построим от часть . Добавим вершину , эквивалентную , и сделаем ее терминальной. Данный автомат принимает слова, зацикленные вокруг выбранной вершины . Мы хотим, чтобы автомат принимал слова, зацикленные вокруг любой такой . Для этого создадим новую стартовую вершину и свяжем ее переходами со всеми перестроенными автоматами (зацикленными вокруг всех подходящих ), в том числе и с изначальным автоматом. Построенный автомат допускает язык , следовательно, данный язык является регулярным. |
Для лучшего понимания алгоритма перестроения автомата рассмотрим пример.
На рис. 3 представлен автомат, допускающий язык . На рис. 4 показано, как этот автомат был перестроен. Были добавлены части, зацикленные относительно вершин и . Появилась новая стартовая вершина , которая связана переходами с изначальным автоматом и его измененными версиями. Данный автомат распознает язык : первые три слова распознает первая часть, которая совпадает с изначальным автоматом; следующие три — вторая, перестроенная относительно вершины ; последнее слово распознает третья часть, зацикленная относительно вершины .