Изоморфизмы упорядоченных множеств — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 5: Строка 5:
 
{{Теорема
 
{{Теорема
 
|statement=Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны.
 
|statement=Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны.
|proof=Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент <tex>x_1</tex>. Если он не наименьший, возьмём любой меньший него <tex>x_2</tex>, если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность <tex> x_1 > x_2 > \dots </tex>, которая рано или поздно должна оборваться, т.к. множество конечное)
+
|proof=Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент <tex>x_1</tex>. Если он не наименьший, возьмём любой меньший него <tex>x_2</tex>. Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность <tex> x_1 > x_2 > \dots </tex> , которая рано или поздно должна оборваться, т.к. множество конечное. Присвоим наименьшему элементу номер 1. Из оставшихся снова выберем наименьший элемент и присвоим ему номер 2. Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое множество из <tex> n </tex> элементов изоморфно множеству <tex> \{ 1,2,\dots,n \} </tex>
 
}}
 
}}

Версия 17:55, 28 декабря 2016

Определение:
Два частично упорядоченных множества [math]A[/math] и [math]B[/math] называются изоморфными, если между ними существует взаимно однозначное соответствие, сохраняющее порядок.
Более формально, [math] \exists [/math] биекция [math] f:A \rightarrow B : \forall \, a_1,a_2 \in A : a_1 \leqslant a_2 \Leftrightarrow f(a_1)\leqslant f(a_1)[/math]
Теорема:
Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны.
Доказательство:
[math]\triangleright[/math]
Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент [math]x_1[/math]. Если он не наименьший, возьмём любой меньший него [math]x_2[/math]. Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность [math] x_1 \gt x_2 \gt \dots [/math] , которая рано или поздно должна оборваться, т.к. множество конечное. Присвоим наименьшему элементу номер 1. Из оставшихся снова выберем наименьший элемент и присвоим ему номер 2. Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое множество из [math] n [/math] элементов изоморфно множеству [math] \{ 1,2,\dots,n \} [/math]
[math]\triangleleft[/math]