Изоморфизмы упорядоченных множеств — различия между версиями
Notantony (обсуждение | вклад) |
Notantony (обсуждение | вклад) |
||
Строка 12: | Строка 12: | ||
{{Теорема | {{Теорема | ||
− | |statement=Любые два счётных плотных линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. | + | |statement=Любые два счётных плотных<ref> Линейно упорядоченное множество называют |
− | |proof=Пусть <tex> A </tex> и <tex> B </tex> — данные множества. Будем строить соответствие пошагово. Пусть мы сделали некоторое соответствие для подмножеств <tex> A_n \subset A </tex> и <tex> B_n \subset B </tex> из <tex> n </tex> элементов. Возьмем любой элемент одного из множеств (для определенности <tex> A </tex>), который не вошел в <tex> A_n </tex>. Посмотрим, в каком отношении он находится со всеми элементами из <tex> A_n </tex>. Он оказался либо наибольшим элементом, либо наименьшим элементом, либо стоящим между некоторыми элементами <tex> a_i </tex> и <tex> a_{i+1} </tex>. Найдем элемент в <tex> B </tex>, находящийся в таком же отношении со всеми элементами <tex> B_n </tex>. Мы можем это сделать, т.к. <tex> B </tex> — плотное множество без | + | плотным, если в нём нет соседних элементов (то есть между любыми двумя есть третий). </ref>. линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. |
+ | |proof=Пусть <tex> A </tex> и <tex> B </tex> — данные множества. Будем строить соответствие пошагово. Пусть мы сделали некоторое соответствие для подмножеств <tex> A_n \subset A </tex> и <tex> B_n \subset B </tex> из <tex> n </tex> элементов. Возьмем любой элемент одного из множеств (для определенности <tex> A </tex>), который не вошел в <tex> A_n </tex>. Посмотрим, в каком отношении он находится со всеми элементами из <tex> A_n </tex>. Он оказался либо наибольшим элементом, либо наименьшим элементом, либо стоящим между некоторыми элементами <tex> a_i </tex> и <tex> a_{i+1} </tex>. Найдем элемент в <tex> B </tex>, находящийся в таком же отношении со всеми элементами <tex> B_n </tex>. Мы можем это сделать, т.к. <tex> B </tex> — плотное множество без наибольшего и наименьшего элементов. Будем считать эти два элемента эквивалентными. Тогда, мы научились получать из соответствия для <tex> n </tex> элементов соответствие для <tex> n+1 </tex> элемента. Чтобы в пределе получить соответствие для всех элементов, воспользуемся счетностью множеств. Пронумеруем все элементы и на каждом четном шаге будем выбирать еще не взятый элемент из множества <tex> A </tex> с наименьшим номером, а на нечетном — из <tex> B </tex>. | ||
}} | }} | ||
Строка 21: | Строка 22: | ||
|definition=Взаимно однозначное отображение частично упорядоченного множества в себя, являющееся изоморфизмом, называют '''автоморфизмом'''. | |definition=Взаимно однозначное отображение частично упорядоченного множества в себя, являющееся изоморфизмом, называют '''автоморфизмом'''. | ||
}} | }} | ||
+ | |||
+ | |||
+ | == Примеры == | ||
+ | |||
Строка 31: | Строка 36: | ||
*[http://www.mccme.ru/free-books/shen/shen-logic-part1-2.pdf Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств. 4-е изд., доп., М: МЦНМО, 2012] | *[http://www.mccme.ru/free-books/shen/shen-logic-part1-2.pdf Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств. 4-е изд., доп., М: МЦНМО, 2012] | ||
* [[wikipedia:ru:Частично_упорядоченные_множества| Wikipedia {{---}} Частично упорядоченные множества]] | * [[wikipedia:ru:Частично_упорядоченные_множества| Wikipedia {{---}} Частично упорядоченные множества]] | ||
+ | |||
+ | ==Примeчания== | ||
+ | <references/> |
Версия 20:10, 28 декабря 2016
Определение: |
Два частично упорядоченных множества и называются изоморфными (англ. isomorphic), если между ними существует взаимно однозначное соответствие, сохраняющее порядок.
Более формально, биекция |
Содержание
Изоморфизм конечных множеств
Теорема: |
Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны. |
Доказательство: |
Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент | . Если он не наименьший, возьмём любой меньший него . Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность , которая рано или поздно должна оборваться, т.к. множество конечное. Присвоим наименьшему элементу номер 1. Из оставшихся снова выберем наименьший элемент и присвоим ему номер 2. Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое множество из элементов изоморфно множеству
Изоморфизм счетных множеств
Теорема: |
Любые два счётных плотных[1]. линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны. |
Доказательство: |
Пусть | и — данные множества. Будем строить соответствие пошагово. Пусть мы сделали некоторое соответствие для подмножеств и из элементов. Возьмем любой элемент одного из множеств (для определенности ), который не вошел в . Посмотрим, в каком отношении он находится со всеми элементами из . Он оказался либо наибольшим элементом, либо наименьшим элементом, либо стоящим между некоторыми элементами и . Найдем элемент в , находящийся в таком же отношении со всеми элементами . Мы можем это сделать, т.к. — плотное множество без наибольшего и наименьшего элементов. Будем считать эти два элемента эквивалентными. Тогда, мы научились получать из соответствия для элементов соответствие для элемента. Чтобы в пределе получить соответствие для всех элементов, воспользуемся счетностью множеств. Пронумеруем все элементы и на каждом четном шаге будем выбирать еще не взятый элемент из множества с наименьшим номером, а на нечетном — из .
Автоморфизм
Определение: |
Взаимно однозначное отображение частично упорядоченного множества в себя, являющееся изоморфизмом, называют автоморфизмом. |
Примеры
См. также
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств. 4-е изд., доп., М: МЦНМО, 2012
- Wikipedia — Частично упорядоченные множества
Примeчания
- ↑ Линейно упорядоченное множество называют плотным, если в нём нет соседних элементов (то есть между любыми двумя есть третий).