Производящая функция — различия между версиями
Dantesto (обсуждение | вклад) (→Источники информации) |
Dantesto (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
'''Производящая функция''' (англ. ''generating function'') — это формальный степенной ряд: | '''Производящая функция''' (англ. ''generating function'') — это формальный степенной ряд: | ||
<tex>G(z)=\sum_{n=0}^\infty a_n z^n</tex>, | <tex>G(z)=\sum_{n=0}^\infty a_n z^n</tex>, | ||
− | порождающий (производящий) последовательность <tex>(a_0, a_1, a_2, | + | порождающий(производящий) последовательность<tex>(a_0, a_1, a_2, \ldots)</tex>. |
}} | }} | ||
Метод производящих функций был разработан Эйлером в 1750-х годах. | Метод производящих функций был разработан Эйлером в 1750-х годах. | ||
Строка 17: | Строка 17: | ||
* Исследования асимптотического поведения последовательности; | * Исследования асимптотического поведения последовательности; | ||
* Доказательства тождеств с последовательностями; | * Доказательства тождеств с последовательностями; | ||
− | * Решения задачи подсчета объектов в комбинаторике. Например, в доказательстве [[Нахождение количества разбиений числа на слагаемые|пентагональной теоремы]] или в задаче нахождения количества расстановок <tex>m</tex> ладей на доске <tex>n</tex> × <tex>n</tex>; | + | * Решения задачи подсчета объектов в комбинаторике.Например, в доказательстве[[Нахождение количества разбиений числа на слагаемые|пентагональной теоремы]] или в задаче нахождения количества расстановок <tex>m</tex> ладей на доске <tex>n</tex> × <tex>n</tex>; |
− | * Вычисления бесконечных сумм. | + | * Вычисления бесконечных сумм. |
== Примеры производящих функций == | == Примеры производящих функций == | ||
Рассмотрим производящие функции для различных комбинаторных последовательностей: | Рассмотрим производящие функции для различных комбинаторных последовательностей: | ||
− | * <tex | + | * <tex>\prod_{ n = 1}^\infty(1-x^n)</tex> {{---}} производящая функция для разности количества разбиений числа <tex>n</tex> в четное и нечетное число различных слагаемых.Например коэффициент при <tex>x^5</tex> {{---}} <tex>+1</tex>, потому-что существует два разбиение на четное число различных слагаемых (<tex>4+1</tex>; <tex>3+2</tex>) и одно на нечетное (<tex>5</tex>). Правильность этого легко осознать, если понять, что каждая скобка представляет какое-то слагаемое и мы можем его взять(второе слагаемое {{---}} <tex>-x^k</tex>) или не взять(первое {{---}} <tex>1</tex>). Эта производящая функция используется в комбинаторном доказательстве пентагональной теоремы. |
− | |||
− | * <tex | + | * <tex> \prod_{n=1}^\infty \dfrac{1}{1-x^n}</tex> {{---}} производящая функция для последовательности <tex>p_n</tex>, где <tex>p_i</tex>{{---}} |
+ | количество разбиений числа <tex>i</tex> на слагаемые. | ||
− | * <tex | + | * <tex>\prod_{ n = 1}^\infty(1+x^n)</tex> {{---}} производящая функция для последовательности <tex>d_n</tex>, где <tex>d_i</tex>{{---}} |
− | + | количество разбиений на различные слагаемые. | |
+ | * <tex>\prod_{n=1}^\infty(1+x^{ 2n - 1})</tex> {{---}} производящая функция для последовательности <tex>l_n</tex>, где <tex>l_i</tex>{{---}} | ||
+ | количество разбиений на нечётные слагаемые.С помощью метода производящих функций можно доказать, что производящие функции последовательностей равны, соответственно <tex>d_n = l_n </tex>: <tex>\prod_{n=1}^\infty(1+x^{ n})=\prod_{n=1}^\infty \dfrac{1-x^{2n}}{1-x^n}=\dfrac{1-x^2}{1-x}\dfrac{1-x^4}{1-x^2}\dfrac{1-x^6}{1-x^3}\ldots=</tex> | ||
− | <tex | + | |
+ | <tex>=\dfrac{1}{1-x}\dfrac{1}{1-x^3}\dfrac{1}{1-x^5}\ldots=\prod_{n=1}^\infty(1+x^{ 2n - 1})</tex> | ||
== Примеры решений задач методом производящих функций == | == Примеры решений задач методом производящих функций == | ||
=== Решение рекуррентных соотношений === | === Решение рекуррентных соотношений === | ||
− | Существует целый класс последовательностей, задаваемых рекуррентным соотношением, например, <tex>f_n</tex> {{---}} числа Фибоначчи или <tex>C_n</tex> {{---}} числа Каталана. Метод производящих функций позволяет получить выражение для <tex>a_n</tex> через номер элемента в последовательности в замкнутом виде, то есть в таком виде, что выражение можно вычислить, предполагая, что <tex>z</tex> достаточно мало. | + | Существует целый класс последовательностей, задаваемых рекуррентным соотношением, например, <tex>f_n</tex> {{---}} числа Фибоначчи или <tex>C_n</tex> {{---}} |
+ | [[Числа Каталана | числа Каталана]]. Метод производящих функций позволяет получить выражение для <tex>a_n</tex> через номер элемента в последовательности в замкнутом виде, то есть в таком виде, что выражение можно вычислить, предполагая, что <tex>z</tex> достаточно мало. | ||
− | |||
− | # Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен <tex>k</tex>, то есть | + | Пусть последовательность <tex>(a_0, a_1, a_2, \ldots)</tex> удовлетворяет некоторому рекуррентному соотношению.Мы хотим получить выражение для <tex>a_n</tex> (при <tex>n \geqslant 0</tex>) в замкнутом виде.Алгоритм получения замкнутого выражения для чисел <tex>a_n</tex>, удовлетворяющих рекуррентному соотношению, с помощью производящих функций состоит из 4 шагов: |
− | #: <tex>a_0= | + | |
− | #: <tex>a_1= | + | # Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен <tex>k</tex>, то есть количество предшествующих элементов, требуемых для вычисления элемента с номером <tex>n</tex>, равно <tex>k</tex>): |
− | #: <tex> | + | #: <tex>a_0=\ldots,</tex> |
− | #: <tex>a_{k-1}= | + | #: <tex>a_1=\ldots,</tex> |
− | #: <tex>a_{n}= | + | #: <tex>\ldots</tex> |
+ | #: <tex>a_{k-1}=\ldots,</tex> | ||
+ | #: <tex>a_{n}=\ldots, n \geqslant k.</tex> | ||
# Домножить каждую строчку на <tex>z</tex> в соответствующей степени и просуммировать строчки для всех <tex>n \geqslant 0 </tex>. | # Домножить каждую строчку на <tex>z</tex> в соответствующей степени и просуммировать строчки для всех <tex>n \geqslant 0 </tex>. | ||
− | # В полученном уравнении привести все суммы | + | # В полученном уравнении привести все суммы к замкнутому виду. Получить уравнение для производящей функции. |
# Выразить <tex>G(z)</tex> в явном виде (решить уравнение, полученное на предыдущем шаге) и разложить производящую функцию в ряд по степеням <tex>z</tex>. | # Выразить <tex>G(z)</tex> в явном виде (решить уравнение, полученное на предыдущем шаге) и разложить производящую функцию в ряд по степеням <tex>z</tex>. | ||
Для демонстрации универсальности метода рассмотрим довольно произвольное рекуррентное соотношение: | Для демонстрации универсальности метода рассмотрим довольно произвольное рекуррентное соотношение: | ||
− | <tex>a_0=1,</tex> | + | <tex>a_0= 1,</tex> |
− | <tex>a_1=2,</tex> | + | <tex>a_1= 2,</tex> |
− | <tex>a_n=6a_{n-1}-8a_{n-2}+n, n \geqslant 2</tex> | + | <tex>a_n= 6a_{ n - 1}-8a_{n-2}+n, n \geqslant 2</tex> |
Запишем производящую функцию для этой последовательности и преобразуем правую часть: | Запишем производящую функцию для этой последовательности и преобразуем правую часть: | ||
− | <tex>G(z)=a_0+a_1z+\sum_{n=2}^\infty (6a_{n-1}-8a_{n-2}+n) z^n</tex> | + | <tex>G(z)=a_0+a_1z+\sum_{n=2}^\infty(6a_{ n - 1}-8a_{n-2}+n) z^n</tex> |
− | <tex>G(z)=a_0+a_1z+6\sum_{n=2}^\infty a_{n-1}z^n - 8\sum_{n=2}^\infty a_{n-2}z^n+\sum_{n=2}^\infty n z^n</tex> | + | <tex>G(z)=a_0+a_1z+6\sum_{n=2}^\infty a_ { n-1} |
+ | z^n - 8\sum_{n=2}^\infty a_ { n-2} | ||
+ | z^n+\sum_{n=2}^\infty n z^n</tex> | ||
− | <tex>G(z)=a_0+a_1z+6z\sum_{n=1}^\infty a_{n}z^n - 8z^2\sum_{n=0}^\infty a_{n}z^n+\sum_{n=2}^\infty n z^n</tex> | + | <tex>G(z)=a_0+a_1z+6z\sum_{n=1}^\infty a_ { n } |
+ | z^n - 8z^2\sum_{n=0}^\infty a_ { n } | ||
+ | z^n+\sum_{n=2}^\infty n z^n</tex> | ||
Строка 77: | Строка 86: | ||
− | Для того, чтобы замкнуть последнюю сумму воспользуемся очень важным приемом, который используется при преобразовании производящих функций. Фактически мы имеем дело с последовательностью <tex>nb_n</tex> (в нашем случае последовательность <tex>b_n=(1, 1, 1, | + | Для того, чтобы замкнуть последнюю сумму воспользуемся очень важным приемом, который используется при преобразовании производящих функций. Фактически мы имеем дело с последовательностью <tex>nb_n</tex> (в нашем случае последовательность <tex>b_n= (1, 1, 1, \ldots)</tex>). Такая последовательность получается путём дифференцирования функции <tex>B(z)</tex>, производящей для <tex>b_n</tex>, с последующим умножением результата на <tex>z</tex>: |
− | <tex | + | <tex>zB'(z)=z(\sum_{n=0}^\infty b_n z^n)'=z\sum_{ n = 1}^\infty nb_n z^{n-1}=\sum_{n=0}^\infty nb_n z^n</tex> |
Строка 86: | Строка 95: | ||
− | <tex | + | <tex>\sum_{n=2}^\infty n z^n=z \sum_{n=2}^\infty n z^{n-1}= z(\sum_{ n = 2}^\infty z^n)'</tex> |
− | <tex | + | <tex>\sum_{n=2}^\infty z^n=\sum_{n=0}^\infty z^n-1-z=\dfrac{1}{1-z}-1-z=\dfrac{z^2}{1-z}</tex> |
− | <tex | + | <tex>z(\dfrac{ z ^ 2}{1-z})'=\dfrac{z^2(2-z)}{(1-z)^2}</tex> |
Строка 98: | Строка 107: | ||
− | <tex | + | <tex>G(z)=1-4z+6zG(z) - 8z^2G(z)+\dfrac{z^2(2-z)}{(1-z)^2}</tex> |
Строка 104: | Строка 113: | ||
− | <tex | + | <tex>G(z)=\dfrac{1-6z+11z^2-5z^3}{(1-6z+8z^2)(1-z)^2}</tex> |
− | Разложим знаменатель на множители и разобьём дробь на сумму простых дробей<ref>[http://www.genfunc.ru/theory/pril04/ О разложении рациональной функции в ряд]</ref>: | + | Разложим знаменатель на множители и разобьём дробь на сумму простых дробей <ref>[http://www.genfunc.ru/theory/pril04/ О разложении рациональной функции в ряд]</ref>: |
+ | <tex> G(z) =\dfrac{1-6z+11z^2-5z^3}{(1-6z+8z^2)(1-z)^2}=\dfrac{1-6z+11z^2-5z^3}{(1-2z)(1-4z)(1-z)^2}=\dfrac{1/3}{(1-z)^2}+\dfrac{7/9}{1-z}-\dfrac{1/2}{1-2z}+\dfrac{7/18}{1-4z}</tex> | ||
− | < | + | Разложим первое слагаемое в ряд, используя расширенные биномиальные коэффициенты <ref>[http://www.genfunc.ru/theory/pril02/ Расширенные биномиальные коэффициенты]</ref>: |
− | |||
+ | <tex>\dfrac{ 1}{(1-z)^2}=(1-z)^{-2}=\sum_{n=0}^{\infty} {-2\choose n}(-z)^n=</tex> | ||
− | |||
+ | <tex>=\sum_{n=0}^{\infty} (-1)^n{n+1\choose 1}(-z)^n=\sum_{n=0}^{\infty}(n+1)z^n</tex> | ||
− | |||
+ | <tex>G(z)=\dfrac{1/3}{(1-z)^2}+\dfrac{7/9}{1-z}-\dfrac{1/2}{1-2z}+\dfrac{7/18}{1-4z}=</tex> | ||
− | |||
+ | <tex>=\dfrac{1}{3}\sum_{n=0}^{\infty} (n+1)z^n +\dfrac{7}{9}\sum_{n=0}^{\infty} z^n - \dfrac{1}{2}\sum_{n=0}^{\infty} 2^n z^n + \dfrac{7}{18}\sum_{n=0}^{\infty} 4^n z^n</tex> | ||
− | |||
+ | <tex>a_n=\dfrac{n+1}{3}+\dfrac{7}{9}-\dfrac{2^n}{2}+\dfrac{7 \cdot 4^n}{18}=\dfrac{7 \cdot 4^n+6n+20}{18}-2^{n-1}</tex> | ||
− | <tex | + | === Расчет дисперсии геометрического распределения === |
+ | Метод производящих функций также используется для нахождения [[Дисперсия случайной величины | математического ожидания и дисперсии]] различных распределений в теории вероятностей. Например, в геометрическом распределении <ref>[http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 Геометрическое распределение]</ref> для нахождения дисперсии <tex>\operatorname{D}(\xi)=\operatorname{E}(\xi^2)-(\operatorname{E}(\xi))^2</tex> нужно найти два мат. ожидания: | ||
− | |||
− | |||
+ | * <tex>\operatorname{E}(\xi)=\sum_{n=1}^{\infty}n p(1-p)^{n-1} </tex> | ||
− | |||
+ | * <tex>\operatorname{E}(\xi^2) = \sum_{n=1}^{\infty}n^{2}p(1-p)^{n-1}</tex> | ||
− | |||
+ | которые фактически являются производящими функциями последовательностей <tex>1, 2, 3\ldots</tex> и <tex>1, 4, 9\ldots</tex>: | ||
− | |||
+ | * <tex>\operatorname{ E}(\xi)=\sum_{n=1}^{\infty}n p(1-p)^{n-1} = </tex> | ||
− | + | <tex>= \sum_{n=0}^{\infty}(n+1) p(1-p)^{n} = </tex> | |
− | <tex | + | <tex>= \sum_{n=0}^{\infty}n p(1-p)^{n} + \sum_{n=1}^{\infty} p(1-p)^{n-1} = </tex> |
− | <tex | + | <tex>= (1-p) \operatorname{E}(\xi) +1 \Rightarrow \operatorname{E}(\xi) = \dfrac{1}{p}</tex> |
− | |||
+ | * <tex>\operatorname{E}(\xi^2) = p\sum_{n=1}^{\infty}n^{2}(1-p)^{n-1} =</tex> | ||
− | + | <tex>=p\sum_{n=1}^{\infty}n(n+1)(1-p)^{n-1} - p\sum_{n=1}^{\infty}n(1-p)^{n-1} =</tex> | |
− | |||
− | |||
− | |||
− | |||
− | <tex | + | <tex>= p\dfrac{\operatorname{d}^{2}}{\operatorname{d}p^{2}}\sum_{n=1}^{\infty}(1-p)^{n+1} + p\dfrac{\operatorname{d}}{\operatorname{d}p}\sum_{n=1}^{\infty}(1-p)^{n} =</tex> |
− | <tex | + | <tex>= p\dfrac{\operatorname{d}^{2}}{\operatorname{d}p^{2}}\left(\sum_{ n = 0}^{\infty}(1-p)^{n} \cdot(1-p)^2\right) +p\dfrac{\operatorname{d}}{\operatorname{d}p}\left(\sum_{ n = 0}^{\infty}(1-p)^{n}\cdot(1-p)\right) =</tex> |
− | <tex | + | <tex>= p\dfrac{\operatorname{d}^{2}}{\operatorname{d}p^{2}}\left(\dfrac{ 1}{1-(1-p)} \cdot(1-p)^2\right) +p\dfrac{\operatorname{d}}{\operatorname{d}p}\left(\dfrac{ 1}{1-(1-p)}\cdot(1-p)\right) =</tex> |
− | <tex | + | <tex>= p\dfrac{\operatorname{d}^{2}}{\operatorname{d}p^{2}}\left(\dfrac{ (1 - p) ^ 2}{p}\right) +p\dfrac{\operatorname{d}}{\operatorname{d}p}\left(\dfrac{ 1 - p}{p}\right) =</tex> |
+ | <tex>= p\cdot\dfrac{2}{p^3} - p\cdot\dfrac{1}{p^2} = \dfrac{2}{p^{2}} - \dfrac{1}{p} = \dfrac{2-p}{p^{2}}</tex>. | ||
Тогда: | Тогда: | ||
− | + | <tex>\operatorname{D}(\xi)=\operatorname{E}(\xi^2)-(\operatorname{E}(\xi))^2= \dfrac{2-p}{p^{2}}-\dfrac{1}{p^2}=\dfrac{1-p}{p^2}</tex> | |
− | <tex | ||
== Приложения == | == Приложения == | ||
=== Примеры простых производящих функций === | === Примеры простых производящих функций === | ||
− | На последнем шаге приведения производящей функции к замкнутому виду требуется разложить полученные слагаемые в ряд. Для этого можно воспользоваться таблицей основных производящих функций<ref>[http://www.genfunc.ru/theory/pril03/ Таблица производящих функций]</ref>. | + | На последнем шаге приведения производящей функции к замкнутому виду требуется разложить полученные слагаемые в ряд. Для этого можно воспользоваться таблицей основных производящих функций <ref>[http://www.genfunc.ru/theory/pril03/ Таблица производящих функций]</ref>. |
− | Все суммы | + | Все суммы выполняются по переменной <tex>n</tex> от <tex>0</tex> до <tex>\infty</tex>. Элементы последовательности нумеруются от <tex>0</tex>. |
{| class="wikitable" style="width:30cm" border=1 | {| class="wikitable" style="width:30cm" border=1 | ||
|+ | |+ | ||
Строка 180: | Строка 186: | ||
| Последовательность || Производящая функция в виде ряда || Производящая функция в замкнутом виде | | Последовательность || Производящая функция в виде ряда || Производящая функция в замкнутом виде | ||
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, 0, 0, | + | | <tex>(1, 0, 0,\ldots)</tex> || <tex>1</tex> || <tex>1</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(0, 0, | + | | <tex>(0, 0, \ldots, 0, 1, 0, 0\ldots)</tex> (<tex>m</tex> нулей в начале) || <tex>z^m</tex> || <tex>z^m</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, 1, 1, | + | | <tex>(1, 1, 1,\ldots)</tex> || <tex>\sum z^n</tex> || <tex>\dfrac{1}{1-z}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, 0, 0, | + | | <tex>(1, 0, 0, \ldots, 0, 1, 0, 0, \ldots 0, 1, 0, 0\ldots)</tex> (повторяется через <tex>m</tex>) || <tex>\sum z^{nm}</tex> || <tex>\dfrac{1}{1-z^m}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, -1, 1, -1, | + | | <tex>(1, -1, 1, -1,\ldots)</tex> || <tex>\sum (-1)^nz^n</tex> || <tex>\dfrac{1}{1+z}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, 2, 3, 4, | + | | <tex>(1, 2, 3, 4,\ldots)</tex> || <tex>\sum (n+1)z^n</tex> || <tex>\dfrac{1}{(1-z)^2}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, 2, 4, 8, 16, | + | | <tex>(1, 2, 4, 8, 16,\ldots)</tex> || <tex>\sum 2^nz^n</tex> || <tex>\dfrac{1}{(1-2z)^2}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex>(1, r, r^2, r^3, | + | | <tex>(1, r, r^2, r^3,\ldots)</tex> || <tex>\sum r^nz^n</tex> || <tex>\dfrac{1}{(1-rz)^2}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex | + | | <tex>(</tex><tex>{m\choose 0}, {m\choose 1}, {m\choose 2}, {m\choose 3},\ldots</tex><tex>)</tex> || <tex>\sum {m\choose n}</tex> <tex>z^n</tex> || <tex>(1+z)^m</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex | + | | <tex>(</tex><tex>1, {{m}\choose m}, {{m+1}\choose m}, {{m+2}\choose m},\ldots</tex><tex>)</tex> || <tex>\sum {{m+n-1}\choose n}</tex> <tex>z^n</tex> || <tex>\dfrac{1}{(1-z)^m}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex | + | | <tex>(</tex><tex>1, {{m+1}\choose m}, {{m+2}\choose m}, {{m+3}\choose m},\ldots</tex><tex>)</tex> || <tex>\sum {{m+n}\choose n}</tex> <tex>z^n</tex> || <tex>\dfrac{1}{(1-z)^{m+1}}</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex | + | | <tex>(0, 1, -\dfrac{1}{2}, \dfrac{1}{3}, -\dfrac{1}{4},\ldots)</tex> || <tex>\sum \dfrac{(-1)^{n+1}}{n}</tex> <tex>z^n</tex> || <tex>\ln(1+z)</tex> |
|-align="left" bgcolor=#FFFFFF | |-align="left" bgcolor=#FFFFFF | ||
− | | <tex | + | | <tex>(1, 1, \dfrac{1}{2}, \dfrac{1}{6}, \dfrac{1}{24},\ldots)</tex> || <tex>\sum \dfrac{1}{n!}</tex> <tex>z^n</tex> || <tex>e^z</tex> |
|} | |} | ||
Строка 213: | Строка 219: | ||
* [http://kvant.mirror1.mccme.ru/1988/11/razbienie_chisel.htm Вайнштейн Ф., Разбиение чисел. Журнал "Квант" № 11, 1988 год] | * [http://kvant.mirror1.mccme.ru/1988/11/razbienie_chisel.htm Вайнштейн Ф., Разбиение чисел. Журнал "Квант" № 11, 1988 год] | ||
* [http://www.genfunc.ru/ Производящие функции] | * [http://www.genfunc.ru/ Производящие функции] | ||
− | * [http://en.wikipedia.org/wiki/Generating_function Wikipedia - Generating function] | + | * [http://en.wikipedia.org/wiki/Generating_function Wikipedia {{---}} Generating function] |
* [[Нахождение количества разбиений числа на слагаемые|Нахождение количества разбиений числа на слагаемые. Пентагональная теорема Эйлера]] | * [[Нахождение количества разбиений числа на слагаемые|Нахождение количества разбиений числа на слагаемые. Пентагональная теорема Эйлера]] | ||
* Graham, Knuth, and Patashnik: Concrete Mathematics | * Graham, Knuth, and Patashnik: Concrete Mathematics |
Версия 17:26, 31 декабря 2016
Определение: |
Производящая функция (англ. generating function) — это формальный степенной ряд:
порождающий(производящий) последовательность , . |
Метод производящих функций был разработан Эйлером в 1750-х годах.
Содержание
Применение
Производящая функция используется для:
- Компактной записи информации о последовательности;
- Нахождения зависимости для последовательности , заданной рекуррентным соотношением. Например, для чисел Фибоначчи;
- Нахождения рекуррентного соотношения для последовательности — вид производящей функции может помочь найти формулу;
- Исследования асимптотического поведения последовательности;
- Доказательства тождеств с последовательностями;
- Решения задачи подсчета объектов в комбинаторике.Например, в доказательствепентагональной теоремы или в задаче нахождения количества расстановок ладей на доске × ;
- Вычисления бесконечных сумм.
Примеры производящих функций
Рассмотрим производящие функции для различных комбинаторных последовательностей:
- — производящая функция для разности количества разбиений числа в четное и нечетное число различных слагаемых.Например коэффициент при — , потому-что существует два разбиение на четное число различных слагаемых ( ; ) и одно на нечетное ( ). Правильность этого легко осознать, если понять, что каждая скобка представляет какое-то слагаемое и мы можем его взять(второе слагаемое — ) или не взять(первое — ). Эта производящая функция используется в комбинаторном доказательстве пентагональной теоремы.
- — производящая функция для последовательности , где —
количество разбиений числа
на слагаемые.- — производящая функция для последовательности , где —
количество разбиений на различные слагаемые.
- — производящая функция для последовательности , где —
количество разбиений на нечётные слагаемые.С помощью метода производящих функций можно доказать, что производящие функции последовательностей равны, соответственно
:
Примеры решений задач методом производящих функций
Решение рекуррентных соотношений
Существует целый класс последовательностей, задаваемых рекуррентным соотношением, например, числа Каталана. Метод производящих функций позволяет получить выражение для через номер элемента в последовательности в замкнутом виде, то есть в таком виде, что выражение можно вычислить, предполагая, что достаточно мало.
— числа Фибоначчи или —
Пусть последовательность удовлетворяет некоторому рекуррентному соотношению.Мы хотим получить выражение для (при ) в замкнутом виде.Алгоритм получения замкнутого выражения для чисел , удовлетворяющих рекуррентному соотношению, с помощью производящих функций состоит из 4 шагов:
- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен
- Домножить каждую строчку на в соответствующей степени и просуммировать строчки для всех .
- В полученном уравнении привести все суммы к замкнутому виду. Получить уравнение для производящей функции.
- Выразить в явном виде (решить уравнение, полученное на предыдущем шаге) и разложить производящую функцию в ряд по степеням .
Для демонстрации универсальности метода рассмотрим довольно произвольное рекуррентное соотношение:
Запишем производящую функцию для этой последовательности и преобразуем правую часть:
Для того, чтобы замкнуть последнюю сумму воспользуемся очень важным приемом, который используется при преобразовании производящих функций. Фактически мы имеем дело с последовательностью (в нашем случае последовательность ). Такая последовательность получается путём дифференцирования функции , производящей для , с последующим умножением результата на :
Тогда замкнем последнее слагаемое следующим образом:
Таким образом наше последнее слагаемое примет вид:
Это уравнение для производящей функции. Из него выражаем :
Разложим знаменатель на множители и разобьём дробь на сумму простых дробей [1]:
Разложим первое слагаемое в ряд, используя расширенные биномиальные коэффициенты [2]:
Расчет дисперсии геометрического распределения
Метод производящих функций также используется для нахождения математического ожидания и дисперсии различных распределений в теории вероятностей. Например, в геометрическом распределении [3] для нахождения дисперсии нужно найти два мат. ожидания:
которые фактически являются производящими функциями последовательностей и :
.
Тогда:
Приложения
Примеры простых производящих функций
На последнем шаге приведения производящей функции к замкнутому виду требуется разложить полученные слагаемые в ряд. Для этого можно воспользоваться таблицей основных производящих функций [4].
Все суммы выполняются по переменной
от до . Элементы последовательности нумеруются от .Последовательность | Производящая функция в виде ряда | Производящая функция в замкнутом виде |
( нулей в начале) | ||
(повторяется через ) | ||
Примечания
Источники информации
- Вайнштейн Ф., Разбиение чисел. Журнал "Квант" № 11, 1988 год
- Производящие функции
- Wikipedia — Generating function
- Нахождение количества разбиений числа на слагаемые. Пентагональная теорема Эйлера
- Graham, Knuth, and Patashnik: Concrete Mathematics