Матричное представление перестановок — различия между версиями
Sketcher (обсуждение | вклад) |
Sketcher (обсуждение | вклад) |
||
| Строка 45: | Строка 45: | ||
<center><tex>P_\sigma P_\pi = P_{\pi \circ \sigma}</tex></center> | <center><tex>P_\sigma P_\pi = P_{\pi \circ \sigma}</tex></center> | ||
| − | где <tex>\circ</tex> — операция | + | где <tex>\circ</tex> — операция умножения перестановок. |
|proof= | |proof= | ||
Рассмотрим <tex>{(P_\sigma P_\pi)}_{i,j} = \sum\limits_{x = 1}^{n}{({P_\sigma}_{i,x} {P_\pi}_{x,j})}</tex> | Рассмотрим <tex>{(P_\sigma P_\pi)}_{i,j} = \sum\limits_{x = 1}^{n}{({P_\sigma}_{i,x} {P_\pi}_{x,j})}</tex> | ||
| Строка 84: | Строка 84: | ||
{{Утверждение|statement=Квадрат элементарной матрицы перестановок есть единичная матрица. | {{Утверждение|statement=Квадрат элементарной матрицы перестановок есть единичная матрица. | ||
| + | |proof= | ||
| + | Любая элементарная матрица перестановок является симметричной матрицей, следовательно <tex> \forall{i,j} : {a}_{ij} = {a}_{ji} </tex>. Отсюда следует, что | ||
| + | <tex> {P} = {P^T} </tex>, а <tex> {P P^T} = {E} </tex>. | ||
}} | }} | ||
| Строка 104: | Строка 107: | ||
видно, что второй и третий столбец поменялись местами. | видно, что второй и третий столбец поменялись местами. | ||
| + | |||
| + | == См. также== | ||
| + | * [http://neerc.ifmo.ru/wiki/index.php?title=%D0%A3%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BE%D0%BA,_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0,_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0_%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BE%D0%BA Умножение перестановок, обратная перестановка, группа перестановок] | ||
== Источники информации == | == Источники информации == | ||
Версия 20:27, 1 января 2017
Определение
| Определение: |
| Матрица перестановки (англ. Permutation matrix) — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
| Определение: |
| Если матрица перестановок получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок (англ. Elementary permutation matrix). |
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка порядка :
Соответствующей матрицей перестановки является матрица вида:
- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
| Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
|
Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что . В результате если , то . Аналогичные рассуждения можно провести когда , и также получим, что . Поэтому для любых справедливо , а раз такое равентсво выполняется, то . |
| Утверждение: |
Для любой матрицы перестановок существует обратная:
|
| Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. |
| Утверждение: |
Для любой матрицы перестановок справедливо:
|
|
Рассмотрим Теперь в обратную сторону где — символ Кронекера. |
| Утверждение: |
Произведение матриц перестановок есть матрица перестановок. |
| Произведение перестановок есть перестановка, значит и произведение матриц перестановок есть матрица перестановок. |
| Утверждение: |
Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
Умножение перестановочной матрицы на произвольную меняет местами строки в . |
|
Рассмотрим произвольную матрицу и матрицу перестановки : возьмем — тую строчку матрицы и умножим на — тый столбец , так как — тый столбец матрицы это двоичный вектор с одной единицей, то от — той строчки матрицы выживет один элемент, причем на — том месте. Умножив — тую строчку матрицы , на остальные столбцы матрицы , получим, что в — той строке матрицы элементы поменяются местами. Умножая другие строки матрицы , будем наблюдать похожее (так как умножаем на те же самые столбцы матрицы ). Таким образом получим, что в матрице столбцы поменялись местами. Доказательство второго утверждения аналогично. |
| Утверждение: |
Квадрат элементарной матрицы перестановок есть единичная матрица. |
|
Любая элементарная матрица перестановок является симметричной матрицей, следовательно . Отсюда следует, что , а . |
| Утверждение: |
Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок. |
Применение
Благодаря своим свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки , которая соответствует перестановке , и матрица ,
тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.
См. также
Источники информации
- Матрица перестановки — Википедия
- Матрица перестановки
- Permutation matrix
- Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press.