Задача о минимуме/максимуме скалярного произведения — различия между версиями
Строка 1: | Строка 1: | ||
− | + | {{ | |
− | + | Задача | |
+ | |definition=задача о нахождении минимальной/максимальной суммы попарных произведений для двух заданных упорядоченных наборов чисел. | ||
+ | }} | ||
== Решение == | == Решение == | ||
Скалярным произведением двух упорядоченных последовательностей чисел будем называть число <tex>S = x_1 y_1 + x_2 y_2 + ... + x_m y_m</tex> | Скалярным произведением двух упорядоченных последовательностей чисел будем называть число <tex>S = x_1 y_1 + x_2 y_2 + ... + x_m y_m</tex> | ||
Строка 9: | Строка 11: | ||
|proof= | |proof= | ||
− | + | Будем считать, что <tex>x_i</tex> отсортирована по возрастанию. Покажем, что если существуют пары чисел <tex>(x_i, y_i)</tex> и <tex>(x_j, y_j)</tex>, такие что <tex>x_i < x_j</tex> и <tex>y_i < y_j</tex>, то скалярное произведение можно уменьшить, поменяв местами <tex>y_i</tex> и <tex>y_j</tex>. Так как <tex>(x_j - x_i)(y_j - y_i) > 0</tex>, то <tex>x_i y_i + x_j y_j > x_j y_i + x_i y_j</tex>. Проделав такую замену для всех <tex>y_i < y_j</tex> получим отсортированную по убыванию последовательность <tex>y_i</tex>. Аналогично для получения максимума во всех парах чисел <tex>(x_i, y_i)</tex> и <tex>(x_j, y_j)</tex>, таких что <tex>x_i < x_j</tex> и <tex>y_i > y_j</tex> нужно менять местами <tex>y_i</tex> и <tex>y_j</tex>. В результате получится отсортированная по возрастанию последовательность. | |
− | |||
− | |||
− | <tex>(x_j - x_i)(y_j - y_i) > 0</tex>, то <tex>x_i y_i + x_j y_j > x_j y_i + x_i y_j</tex> | ||
− | |||
− | |||
− | |||
− | |||
}} | }} | ||
Строка 23: | Строка 18: | ||
== Литература == | == Литература == | ||
− | + | * Романовский И. В. Дискретный анализ. — 3-е изд. — С. 320 — ISBN 5-7940-0114-3. | |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика ]] | [[Категория: Комбинаторика ]] |
Версия 22:51, 2 января 2017
Задача: |
задача о нахождении минимальной/максимальной суммы попарных произведений для двух заданных упорядоченных наборов чисел. |
Решение
Скалярным произведением двух упорядоченных последовательностей чисел будем называть число
Теорема (о минимуме/максимуме скалярного произведения): |
Минимум скалярного произведения достигается при сопоставлении возрастащей последовательности и убывающей последовательности . При сопоставлении возрастающей достигается максимум. |
Доказательство: |
Будем считать, что | отсортирована по возрастанию. Покажем, что если существуют пары чисел и , такие что и , то скалярное произведение можно уменьшить, поменяв местами и . Так как , то . Проделав такую замену для всех получим отсортированную по убыванию последовательность . Аналогично для получения максимума во всех парах чисел и , таких что и нужно менять местами и . В результате получится отсортированная по возрастанию последовательность.
Примечание
- Данная теорема также широко известна как транс-неравенство или перестановочное неравенство.
Литература
- Романовский И. В. Дискретный анализ. — 3-е изд. — С. 320 — ISBN 5-7940-0114-3.