Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) (→Псевдокод) |
Анна (обсуждение | вклад) |
||
(не показано 40 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
− | <tex | + | {{Теорема |
− | + | |statement= Задача о проверке на пустоту пересечения двух КС-грамматик неразрешима. | |
− | | | + | |proof= |
− | + | Пусть <tex>A = \{ (G_1, G_2) \mid L(G_1) \cap L(G_2) = \varnothing \}</tex>. Сведем [[Примеры неразрешимых задач: проблема соответствий Поста|проблему соответствий Поста]] к <tex>\overline{A}</tex>, таким образом показав, что дополнение проблемы неразрешимо. Так как рекурсивные языки [[Замкнутость разрешимых и перечислимых языков относительно теоретико-множественных и алгебраических операций|замкнуты относительно дополнения]], то из неразрешимости дополнения проблемы будет следовать неразрешимость самой проблемы. | |
− | }} | + | |
− | + | Для любого экземпляра ПСП <tex>(x_1, x_2, ..., x_n)</tex> и <tex>(y_1, y_2, ..., y_n)</tex> над алфавитом <tex>\Sigma</tex> можно подобрать символ <tex>\# \notin \Sigma</tex>. Для каждого экземпляра построим грамматики: | |
− | + | * <tex>G_1 : S \rightarrow aSa \mid a\#a</tex> для всех <tex>a \in \Sigma</tex>. Тогда <tex>L(G_1) = \{ w\#w^R \mid w \in \Sigma^* \}</tex>, где обозначение <tex>w^R</tex> {{---}} разворот <tex>w</tex>. | |
− | + | * <tex>G_2 : S \rightarrow x_iSy^R_i \mid x_i\#y^R_i</tex> для всех <tex>i = 1, 2, \dots n</tex>. Тогда <tex>L(G_2) = \{ x_{i_1} x_{i_2} \dots x_{i_m} \# (y_{i_1} y_{i_2} \dots y_{i_m})^R \mid i_1, i_2, \dots i_m \in \{ 1, 2, \dots n \}, m \geqslant 1 \}</tex>. | |
+ | |||
+ | Если данный экземпляр ПСП имеет решение, то <tex>L(G_2)</tex> содержит хотя бы одну строку вида <tex>w\#w^R</tex>, поэтому <tex>L(G_1) \cap L(G_2) \ne \varnothing</tex>, и наоборот, если он не имеет решения, то <tex>L(G_2)</tex> не содержит строк такого вида, соответственно <tex>L(G_1) \cap L(G_2) = \varnothing</tex>. | ||
− | + | Таким образом мы свели проблему соответствий Поста к <tex>\overline{A}</tex>, следовательно, задача о проверке на пустоту пересечения двух КС-грамматик неразрешима. | |
− | + | }} | |
− | + | Из неразрешимости вышеприведенной задачи следует неразрешимость ряда других задач. Рассмотрим несколько примеров. | |
− | + | По двум КС-грамматикам <tex>G_1</tex> и <tex>G_2</tex> можно построить КС-грамматику для [[Замкнутость КС-языков относительно различных операций#.D0.9A.D0.BE.D0.BD.D0.BA.D0.B0.D1.82.D0.B5.D0.BD.D0.B0.D1.86.D0.B8.D1.8F|конкатенации]] задаваемых ими языков <tex>L(G_1)L(G_2)</tex>. По аналогии с этим мы можем рассматривать язык <tex>L(G_1)\#L(G_2)\#</tex>, где <tex>\#</tex> {{---}} новый символ, не встречающийся в алфавите. Заметим, что пересечение языков непусто, то есть <tex>L(G_1) \cap L(G_2) \ne \varnothing </tex>, тогда и только тогда, когда <tex>L(G_1)\#L(G_2)\#</tex> содержит [[Алгоритм Ландау-Шмидта#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|тандемный повтор]]. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Аналогично можно заметить, что пересечение <tex>L(G_1) \cap L(G_2) \ne \varnothing </tex> тогда и только тогда, когда <tex>L(G_1)\#L(G_2)^R</tex> содержит палиндром. | |
− | |||
− | + | Таким образом, мы имеем: | |
− | {{ | + | {{Утверждение |
− | |statement= | + | |statement= Пусть дана грамматика <tex>G</tex>, <tex>L(G) = L</tex>. Тогда следующие задачи неразрешимы: |
− | + | # Содержит ли <tex>L</tex> тандемный повтор. | |
− | + | # Содержит ли <tex>L</tex> палиндром. | |
− | <tex> | ||
− | |||
− | |||
− | |||
}} | }} |
Текущая версия на 16:16, 4 января 2017
Теорема: |
Задача о проверке на пустоту пересечения двух КС-грамматик неразрешима. |
Доказательство: |
Пусть проблему соответствий Поста к , таким образом показав, что дополнение проблемы неразрешимо. Так как рекурсивные языки замкнуты относительно дополнения, то из неразрешимости дополнения проблемы будет следовать неразрешимость самой проблемы. . СведемДля любого экземпляра ПСП и над алфавитом можно подобрать символ . Для каждого экземпляра построим грамматики:
Если данный экземпляр ПСП имеет решение, то Таким образом мы свели проблему соответствий Поста к содержит хотя бы одну строку вида , поэтому , и наоборот, если он не имеет решения, то не содержит строк такого вида, соответственно . , следовательно, задача о проверке на пустоту пересечения двух КС-грамматик неразрешима. |
Из неразрешимости вышеприведенной задачи следует неразрешимость ряда других задач. Рассмотрим несколько примеров.
По двум КС-грамматикам конкатенации задаваемых ими языков . По аналогии с этим мы можем рассматривать язык , где — новый символ, не встречающийся в алфавите. Заметим, что пересечение языков непусто, то есть , тогда и только тогда, когда содержит тандемный повтор.
и можно построить КС-грамматику дляАналогично можно заметить, что пересечение
тогда и только тогда, когда содержит палиндром.Таким образом, мы имеем:
Утверждение: |
Пусть дана грамматика , . Тогда следующие задачи неразрешимы:
|