Алгоритм отмены цикла минимального среднего веса — различия между версиями
Penguinni (обсуждение | вклад) (→Корректность) |
Penguinni (обсуждение | вклад) (→Корректность) |
||
Строка 37: | Строка 37: | ||
:Возьмем <tex>\varphi</tex> такое, что стоимости всех ребер в <tex>C</tex> не меньше <tex>-\varepsilon</tex>. Тогда стоимость всего цикла <tex>p_{\varphi}(C)\geqslant -n\cdot \varepsilon</tex> (в цикле не больше <tex>n</tex> ребер). Таким образом, <tex>p_{\varphi}(C) > -1</tex>, то есть <tex>p(C) > -1</tex>. Но исходные пропускные способности были целочисленными, поэтому <tex>p(C) \geqslant 0</tex>, а это означает, что в остаточной сети нет отрицательных циклов, и, соответственно, <tex>f</tex> {{---}} поток минимальной стоимости.}} | :Возьмем <tex>\varphi</tex> такое, что стоимости всех ребер в <tex>C</tex> не меньше <tex>-\varepsilon</tex>. Тогда стоимость всего цикла <tex>p_{\varphi}(C)\geqslant -n\cdot \varepsilon</tex> (в цикле не больше <tex>n</tex> ребер). Таким образом, <tex>p_{\varphi}(C) > -1</tex>, то есть <tex>p(C) > -1</tex>. Но исходные пропускные способности были целочисленными, поэтому <tex>p(C) \geqslant 0</tex>, а это означает, что в остаточной сети нет отрицательных циклов, и, соответственно, <tex>f</tex> {{---}} поток минимальной стоимости.}} | ||
− | Обозначим за <tex>\varepsilon(f)</tex> минимальное <tex>\varepsilon</tex> такое, что поток <tex>f</tex> {{---}} <tex>\varepsilon</tex>-оптимальный. | + | Обозначим за <tex>\mu(f)</tex> минимальную величину среди средних весов циклов для потока <tex>f</tex>, а за <tex>\varepsilon(f)</tex> минимальное <tex>\varepsilon</tex> такое, что поток <tex>f</tex> {{---}} <tex>\varepsilon</tex>-оптимальный. |
{{Лемма | {{Лемма | ||
|statement=Если <tex>f</tex> {{---}} поток не минимальной стоимости, то <tex>\varepsilon(f)=-\mu(f)</tex>. | |statement=Если <tex>f</tex> {{---}} поток не минимальной стоимости, то <tex>\varepsilon(f)=-\mu(f)</tex>. | ||
|proof= | |proof= | ||
+ | *Покажем, что <tex>\mu(f) \geqslant -\varepsilon(f)</tex>. | ||
:Рассмотрим в остаточной сети некоторый цикл <tex>C</tex>. | :Рассмотрим в остаточной сети некоторый цикл <tex>C</tex>. | ||
:Поскольку поток <tex>f</tex> является <tex>\varepsilon(f)</tex>-оптимальным, верно следующее: <tex>p(C) = p_{\varphi}(C) \geqslant -\texttt{len}(C) \cdot \varepsilon(f)</tex> или <tex>\dfrac{p(C)}{\texttt{len}(C)} \geqslant -\varepsilon(f) </tex>, то есть <tex>\mu(C) \geqslant -\varepsilon(f)</tex>, а поскольку это верно для любого цикла, то и <tex>\mu(f) \geqslant -\varepsilon(f)</tex>. | :Поскольку поток <tex>f</tex> является <tex>\varepsilon(f)</tex>-оптимальным, верно следующее: <tex>p(C) = p_{\varphi}(C) \geqslant -\texttt{len}(C) \cdot \varepsilon(f)</tex> или <tex>\dfrac{p(C)}{\texttt{len}(C)} \geqslant -\varepsilon(f) </tex>, то есть <tex>\mu(C) \geqslant -\varepsilon(f)</tex>, а поскольку это верно для любого цикла, то и <tex>\mu(f) \geqslant -\varepsilon(f)</tex>. | ||
+ | |||
+ | *Теперь покажем, что <tex>\mu(f) \leqslant -\varepsilon(f)</tex>. | ||
+ | :Пусть <tex>C</tex> {{---}} цикл минимального среднего веса в остаточной сети. Поскольку поток <tex>f</tex> не минимален, в остаточной сети существует отрицательный цикл, и тогда <tex>\mu(C)=\mu(f) < 0</tex>. | ||
+ | :Предположим, что существуют <tex>\varphi</tex> и <tex>\varepsilon</tex> такие, что <tex>\varepsilon > -\mu(f)</tex> или <tex>-\varepsilon < \mu(f)</tex>. | ||
+ | :Рассмотрим такое ребро <tex>uv</tex>, входящее в цикл, что величина <tex>p_{\varphi}(uv)</tex> минимальна. Тогда верно следующее: <tex>p_{\varphi}(uv) \leqslant \mu(f)</tex>, то есть <tex>p_{\varphi}(uv) < -\varepsilon</tex>, что означает, что <tex>f</tex> не является <tex>\varepsilon</tex>-оптимальным. Получено противоречие, и, значит, <tex>\varepsilon(f) \leqslant -\mu(f)</tex>. | ||
}} | }} | ||
Версия 00:48, 5 января 2017
В статье описывается один из сильно полиномиальных алгоритмов решения задачи о поиске потока минимальной стоимости.
Содержание
Алгоритм
Приведенный алгоритм основан на идее алгоритма Клейна отмены цикла отрицательного веса. Выбор цикла минимального среднего веса вместо случайного делает алгоритм сильно полиномиальным.
Определение: |
Сильно полиномиальными (англ. strongly polynomial) в контексте данной задачи называются алгоритмы, чья сложность полиномиально зависит от | и .
Описание
Обозначим как пропускную способность цикла при протекании в сети потока . Cтоимость цикла обозначим за , а длину (число входящих в него ребер) — за .
остаточнуюОпределение: |
Средним весом (англ. mean weight) цикла будем называть отношение его стоимости к его длине |
- Шаг 1. Рассмотрим некоторый поток .
- Шаг 2. Найдем цикл , обладающий наименьшим средним весом. Если , то — поток минимальной стоимости и алгоритм завершается.
- Шаг 3. Отменим цикл , пустив по нему максимально возможный поток: . Перейдем к шагу 1.
Корректность
Пусть потенциалов .
— поток минимальной стоимости. Введем на нашей сети функциюОпределение: |
Приведенной стоимостью (англ. reduced cost) ребра назовем следующую величину: | .
Иными словами, приведенная стоимость — это сколько нужно потратить денег, чтобы перевести единицу жидкости из
в . (Ее нужно купить в , перевезти из в и продать в .)Лемма: |
Если — поток минимальной стоимости, то такое, что . |
Доказательство: |
|
Определение: |
Будем говорить, что поток | — -оптимальный (англ. -optimal), если такая, что .
Лемма: |
Если стоимости целочисленны и поток — -оптимальный, где , то — поток минимальной стоимости. |
Доказательство: |
|
Обозначим за
минимальную величину среди средних весов циклов для потока , а за минимальное такое, что поток — -оптимальный.Лемма: |
Если — поток не минимальной стоимости, то . |
Доказательство: |
|
Сложность
, при этом времени тратится на поиск цикла минимального среднего веса.
Алгоритм поиска цикла минимального среднего веса
Наивный способ
Устроим двоичный поиск. Установим нижнюю и верхнюю границы величины среднего веса цикла и соответственно, вычислим серединное значение и отнимем полученную величину от всех ребер сети. Если теперь в нашей сети есть отрицательный цикл (этот факт можно проверить при помощи алгоритма Форда-Беллмана), значит существует цикл с меньшим средним весом, чем . Тогда продолжим поиск среди значений в диапазоне от до , иначе — от до . Такой алгоритм будет работать за , где — точность выбора величины среднего веса цикла.
Продвинутый алгоритм
Добавим к нашему графу вершину алгоритм Форда-Беллмана и попросим его построить нам квадратную матрицу со следующим условием: — длина минимального пути от до ровно из ребер. Тогда длина оптимального цикла минимального среднего веса вычисляется как .
и ребра из нее во все остальные вершины. ЗапустимДостаточно будет доказать это правило для
, так как для других можно просто отнять эту величину от всех ребер и получить снова случай с .Чтобы найти цикл после построения матрицы
, запомним, при каких и достигается оптимальное значение , и, используя , поднимемся по указателям предков. Как только мы попадем в уже посещенную вершину — мы нашли цикл минимального среднего веса.Этот алогоритм работает за
.См. также
- Использование потенциалов Джонсона при поиске потока минимальной стоимости
- Сведение задачи о назначениях к задаче о потоке минимальной стоимости