Быстрый поиск наибольшей возрастающей подпоследовательности — различия между версиями
м |
(→Оптимизация до O(n\operatorname{log}\operatorname{log}k): Подраздел "Основная идея" написан) |
||
Строка 159: | Строка 159: | ||
Чтобы [[Дерево ван Эмде Боаса]] выполняло операции за <tex>O(\operatorname{log}\operatorname{log}k)</tex>, необходимо алфавит обрабатываемых значений уменьшить до <tex>O(k)</tex>. | Чтобы [[Дерево ван Эмде Боаса]] выполняло операции за <tex>O(\operatorname{log}\operatorname{log}k)</tex>, необходимо алфавит обрабатываемых значений уменьшить до <tex>O(k)</tex>. | ||
− | Предположим, мы знаем такое {{Acronym|приближение <tex>k</tex>|далее рассмотрим нахождение и насколько оно точное}} <tex>m: m \ge k</tex>. Если мы разобьем всю последовательность на блоки из {{ Acronym|<tex>m</tex> элементов|последний блок может быть меньше}} и нам удастся обрабатывать каждый как перестановку из <tex>m</tex> элементов, то мы получим асимптотическое время <tex>O(n \operatorname{log} \operatorname{log} (k + m))</tex>, а т.к. <tex>m \ge k</tex>, то <tex>O(n \operatorname{log} \operatorname{log} m)</tex>. (Мы будем обрабатывать блоки последовательно, т.е. с предыдущего блока у нас может остаться <tex>k</tex> значений в очереди, которые дополняются <tex>m</tex> значениями очередного блока - получаем | + | Предположим, мы знаем такое {{Acronym|приближение <tex>k</tex>|далее рассмотрим нахождение и насколько оно точное}} <tex>m: m \ge k</tex>. Если мы разобьем всю последовательность на блоки из {{ Acronym|<tex>m</tex> элементов|последний блок может быть меньше}} и нам удастся обрабатывать каждый как перестановку из <tex>m</tex> элементов, то мы получим асимптотическое время <tex>O(n \operatorname{log} \operatorname{log} (k + m))</tex>, а т.к. <tex>m \ge k</tex>, то <tex>O(n \operatorname{log} \operatorname{log} m)</tex>. (Мы будем обрабатывать блоки последовательно, т.е. с предыдущего блока у нас может остаться <tex>k</tex> значений в очереди, которые дополняются <tex>m</tex> значениями очередного блока - получаем верхнее ограничение в <tex>k + m</tex> обрабатываемых возможных значений.) |
− | + | '''''Описанный здесь алгоритм подбора <tex>m_i</tex> и получение асимптотической оценки <tex>O(n\operatorname{log}\operatorname{log}k)</tex> в других подразделах рассмотрено не будет, т.к. в основном это доказательство, сложного для понимания/реализации ничего нет''''' | |
− | == | + | Рассмотрим последовательность <tex>\{m_0,~m_1,~m_2,~\dots\}</tex>, где <tex> m_{i+1} = m_i ^{\operatorname{log}m_i} = 2^{\operatorname{log}^2m_i}</tex>, <tex>m_0</tex> - некоторое значение, меньшее <tex>k</tex>. |
+ | Будем последовательно для элементов этой последовательности запускать {{Acronym|алгоритм|о котором ниже}}. Если условие <tex>m \ge k</tex> перестает выполняться, прерываем выполнение. Таким образом, время работы для каждого <tex>m_j</tex> будет <tex>O(n\operatorname{log}\operatorname{log}m_j)</tex>. {{Acronym|Найдется|первый из подобных}} такой <tex>m_i</tex>, который окажется больше <tex>k</tex>, и алгоритм успешно завершится. | ||
+ | <tex>\operatorname{log}\operatorname{log}m_{i+1} = \operatorname{log}\operatorname{log}2^{\operatorname{log}^2m_i} = \operatorname{log}\operatorname{log}^2m_i = 2\operatorname{log}\operatorname{log}m_i</tex> | ||
+ | |||
+ | <tex>\operatorname{log}\operatorname{log}m_j = 2^{j-i}\operatorname{log}\operatorname{log}m_i</tex> | ||
+ | |||
+ | {{Acronym|Общее время|для всех обработанных значений m}} работы - <tex>O(n(\sum\limits_{j = 0}\limits^{i}2^{1-j})\operatorname{log}\operatorname{log}m_i) = O(n\operatorname{log}\operatorname{log}m_i)</tex>. Заметим, что <tex>m_i < k^{\operatorname{log}k}</tex>, т.к. в противном случае <tex>m_{i-1} > k</tex>, что противоречит тому, что <tex>m_i</tex> - первый из тех, что больше <tex>k</tex>. Следовательно, <tex>\operatorname{log}\operatorname{log}m_i < 2\operatorname{log}\operatorname{log}k \</tex>. | ||
+ | |||
+ | Получаем время работы <tex>O(n\operatorname{log}\operatorname{log}k)</tex> | ||
=== Деление на блоки === | === Деление на блоки === | ||
+ | ==== Основная идея ==== | ||
+ | Разделим исходную перестановку <tex>\pi</tex> на блоки <tex>C_j = {\pi_{(j-1)m + 1},~\pi_{(j-1)m + 2},~\dots, ~\pi_{(j-1)m + m}}</tex> |
Версия 21:53, 6 января 2017
Задача: |
Дана перестановка . Требуется найти НВП за , где — длина НВП. |
Содержание
Алгоритм
Нахождение длины НВП
Основная идея
Пусть
— входная перестановка.Для каждой длины элемент, что может быть последним в возрастающей подпоследовательности длины , запишем их в массив .
предполагаемой НВП находим наименьшийЕсли обрабатываемый элемент
больше последнего элемента какой-нибудь возрастающей последовательности, он может ее увеличить.Будем последовательно обрабатывать элементы
:- Если , значит с ним можно сделать максимальную, из уже рассмотренных, возрастающую подпоследовательность. Записываем его в конец больше
- Иначе заменяет наименьший лучший элемент, из тех, что больше .
Следует отметить, что полученный массив также образует возрастающую последовательность, где мы должны выполнять операции приоритетную очередь, реализованную через Дерево ван Эмде Боаса. Таким образом получаем амортизированного времени на одну операцию.
, соответственно целесообразно использоватьПример
Типы операций:
Последовательность:
9 | 3 | 10 | 4 | 8 | 1 | 2 | 12 | 6 | 5 | 7 | 11 |
Состояние очереди при каждом добавлении:
9 | 9 | ||||
3 | 3 | ||||
3 | 10 | 10 | |||
3 | 4 | 4 | |||
3 | 4 | 8 | 8 | ||
1 | 4 | 8 | 1 | ||
1 | 2 | 8 | 2 | ||
1 | 2 | 8 | 12 | 12 | |
1 | 2 | 6 | 12 | 6 | |
1 | 2 | 5 | 12 | 5 | |
1 | 2 | 5 | 7 | 7 | |
1 | 2 | 5 | 7 | 11 | 11 |
Псевдокод
int LIS(vector<int> следующий B.delete(B.next(x)) else // добавленный элемент - максимальный // предыдущие значения не трогаем, очередь увеличилась k = k + 1 return k) PriorityQueue B // рабочая приоритетная очередь int k = 0 // длина НВП int n = .size for i = 1 to n x = [i] // в любом случае добавляем в очередь очередной элемент // устаревшие будем удалять B.insert(x) if B.next(x) // добавленный элемент — не максимальный // удаляем предыдущее значение — заменяем
Расширение алгоритма до нахождения НВП
Основная идея
Будем запоминать пары: для каждого элемента записываем его "предшественника".
Тогда, выбрав какой-нибудь лучший элемент для максимальной длины, мы можем легко восстановить НВП .
Общий вид алгоритма
9 | 9 | ||||
3 | 3 | ||||
3 | 10 | 10 | |||
3 | 4 | 4 | |||
3 | 4 | 8 | 8 | ||
1 | 4 | 8 | 1 | ||
1 | 2 | 8 | 2 | ||
1 | 2 | 8 | 12 | 12 | |
1 | 2 | 6 | 12 | 6 | |
1 | 2 | 5 | 12 | 5 | |
1 | 2 | 5 | 7 | 7 | |
1 | 2 | 5 | 7 | 11 | 11 |
predecessor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | 3 | 2 | 2 | 5 | 4 | 3 | 7 | 8 |
Псевдокод
vector<int> LIS(vector<int>) PriorityQueue B int k = 0 int n = .size vector<int> predecessor(n) // резервируем позиций for i = 1 to n x = [i] B.insert(x) predecessor[x] = B.prev(x) if B.next(x) B.delete(B.next(x)) else k = k + 1 // по цепочке от последнего элемента // восстанавливаем НВП vector<int> result int cur = B.max() result += [cur] while predecessor[cur] result += [predecessor[cur]] cur = predecessor[cur] return result
Оптимизация до
Основная идея
Чтобы Дерево ван Эмде Боаса выполняло операции за , необходимо алфавит обрабатываемых значений уменьшить до .
Предположим, мы знаем такое приближение . Если мы разобьем всю последовательность на блоки из и нам удастся обрабатывать каждый как перестановку из элементов элементов, то мы получим асимптотическое время , а т.к. , то . (Мы будем обрабатывать блоки последовательно, т.е. с предыдущего блока у нас может остаться значений в очереди, которые дополняются значениями очередного блока - получаем верхнее ограничение в обрабатываемых возможных значений.)
Описанный здесь алгоритм подбора
и получение асимптотической оценки в других подразделах рассмотрено не будет, т.к. в основном это доказательство, сложного для понимания/реализации ничего нетРассмотрим последовательность
, где , - некоторое значение, меньшее .Будем последовательно для элементов этой последовательности запускать алгоритм. Если условие перестает выполняться, прерываем выполнение. Таким образом, время работы для каждого будет . Найдется такой , который окажется больше , и алгоритм успешно завершится.
Общее время работы - . Заметим, что , т.к. в противном случае , что противоречит тому, что - первый из тех, что больше . Следовательно, .
Получаем время работы
Деление на блоки
Основная идея
Разделим исходную перестановку
на блоки