Транзитивный остов — различия между версиями
Alexandra (обсуждение | вклад) (→Алгоритм для антисимметричных отношений) |
Alexandra (обсуждение | вклад) (→Источники информации) |
||
Строка 50: | Строка 50: | ||
== Источники информации == | == Источники информации == | ||
* [http://en.wikipedia.org/wiki/Transitive_reduction Wikipedia: Transitive reduction] | * [http://en.wikipedia.org/wiki/Transitive_reduction Wikipedia: Transitive reduction] | ||
− | * | + | * ''J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs»'', 1987. |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Отношения ]] | [[Категория: Отношения ]] |
Версия 19:13, 8 января 2017
Определение: |
Транзитивным остовом (англ. transitive reduction) отношения на множестве называется минимальное отношение на такое, что транзитивное замыкание равно транзитивному замыканию . |
Алгоритм для антисимметричных отношений
Для удобства представим отношение в виде графа:
. Его транзитивным остовом будет граф .Введём несколько обозначений:
- — в графе есть ребро из вершины в ;
- — в графе есть путь (возможно, рёберно пустой) из вершины в ;
- — в графе есть рёберно непустой путь из вершины в .
Также введём определение транзитивного замыкания в терминах теории графов:
Определение: |
Транзитивным замыканием графа | называется граф , где .
Так как отношение антисимметрично, то граф ацикличен, то есть в нём выполняется следующее: .
Докажем теорему, из которой следует алгоритм.
Теорема: |
Пусть . Тогда |
Доказательство: |
Докажем, что :Пусть уже построен. Пусть . Тогда (так как иначе удаление ребра из приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова .Пусть — вершина, для которой выполняется . Докажем, что , от противного. Пусть . ацикличен, поэтому . Поскольку , верно . Поскольку ацикличен, путь из в не может содержать ребра , аналогично путь из в не может содержать . Поэтому в существует путь из в , не содержащий в себе ребро , значит, удаление из не изменит транзитивное замыкание, что противоречит условию минимальности . Поэтому . Поскольку , существует такая вершина , что , что приводит к выводу, что .Докажем, что :Предположим, что Так как множества и . Докажем, что , от противного. Предположим, что . Поскольку ацикличен, и поэтому . Поскольку , существует вершина такая, что и , поэтому . Поскольку ацикличен, существует вершина , для которой выполняется , что противоречит нашему предположению. и включены друг в друга, они совпадают, то есть равны. |
Псевдокод
= foreach in foreach in foreach in if and and .delete(pair( , ))
Источники информации
- Wikipedia: Transitive reduction
- J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs», 1987.