Простые числа — различия между версиями
(→Определение) |
|||
Строка 1: | Строка 1: | ||
− | + | {{Определение | |
+ | |definition= | ||
+ | [[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|Натуральное]] число <tex>p</tex> называется '''простым''', если <tex>p>1</tex> и <tex>p</tex> не имеет положительных делителей отличных от <tex>1</tex> и <tex>p</tex> | ||
+ | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | ''' | + | [[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|Натуральное]] число <tex>n>1</tex> называется '''составным''', если <tex>n</tex> имеет по крайней мере один положительный делитель отличный от <tex>1</tex> и <tex>n</tex>. |
+ | }} | ||
+ | |||
+ | |||
+ | ==Свойства простых чисел== | ||
+ | |||
+ | {{Утверждение | ||
+ | |about=1 | ||
+ | |statement=<tex>p_1</tex>, <tex>p_2</tex> {{---}} различные простые числа, то <tex>p_1</tex> не [[Натуральные_и_целые_числа#.D0.94.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.87.D0.B8.D1.81.D0.B5.D0.BB_.D1.81_.D0.BE.D1.81.D1.82.D0.B0.D1.82.D0.BA.D0.BE.D0.BC|делится без остатка]] на <tex>p_2</tex>. | ||
+ | |proof= | ||
+ | Положительными делителями простого числа <tex>p_2</tex> являются только <tex>1</tex> и <tex>p_2</tex>. Простое число <tex>p_1 \neq 1</tex> и <tex>p_1 \neq p_2</tex>. Значит <tex>p_1</tex> не делится на <tex>p_2</tex> | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |about=2 | ||
+ | |statement=Для любого [[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|натурального]] числа <tex>n>1</tex>, наименьший, отличный от <tex>1</tex> положительный делитель всегда является простым числом | ||
+ | |proof= | ||
+ | Рассмотрим множество <tex>M</tex> {{---}} положительные, отличные от <tex>1</tex> делители числа <tex>n</tex>. Множество M не пусто, так как <tex>n \in M</tex>. Значит в множестве <tex>M</tex> существует наименьшее число <tex>q>1</tex>. | ||
+ | |||
+ | Пусть <tex>q</tex> не простое, тогда существует <tex>a</tex> такое, что <tex>1<a<q</tex> и <tex>q</tex> делится на <tex>a</tex>. Так как <tex>n</tex> делится на <tex>q</tex>, то <tex> n</tex> делится на <tex>a</tex>. Значит <tex>q</tex> не наименьшее число в множестве <tex>M</tex>. Получили противоречие. Значит <tex>q</tex> простое число. | ||
+ | }} | ||
+ | |||
+ | По этой теореме мы получаем алгоритм для поиска простых чисел "[[Решето Эратосфена]]". | ||
+ | |||
+ | ==Множество простых чисел== | ||
+ | {{Утверждение | ||
+ | |statement=Множество простых чисел бесконечно | ||
+ | |proof= | ||
+ | Пусть множество простых чисел конечно и состоит из чисел <tex>2,3,5, \dots p</tex>, где <tex>p</tex> {{---}} последнее, самое большое простое число. | ||
+ | |||
+ | Рассмотрим число <tex>N=2*3*5* \dots *p +1</tex>. Число <tex>N</tex> не делится на числа <tex>2, 3, \dots , p</tex>. Так как при делении <tex>N</tex> на эти числа получится остаток <tex>1</tex>. | ||
+ | |||
+ | Значит число <tex>N=1</tex> (по утв. <tex>2</tex>). C другой стороны <tex>N>1</tex>. Значит предположение, что множество простых чисел конечно неверно. | ||
}} | }} | ||
Последовательность простых чисел начинается так: | Последовательность простых чисел начинается так: | ||
− | : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, | + | : <tex>2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \dots </tex> |
+ | |||
+ | ==См. также== | ||
+ | * [[Натуральные и целые числа]] | ||
+ | * [[Основная теорема арифметики]] | ||
+ | * [[Теоремы о простых числах]] | ||
+ | * [[Разложение на множители (факторизация)]] | ||
+ | |||
+ | ==Источники инфомации== | ||
+ | * А.А. Бухштаб. "Теория чисел" {{---}} Просвещение. 1966 г. {{---}} с. 28 - 33. | ||
+ | * И. М. Виноградов. "Основы теории чисел" {{---}} c. 18 - 20. | ||
+ | [[Категория: Алгоритмы алгебры и теории чисел]] | ||
[[Категория: Классы чисел]] | [[Категория: Классы чисел]] |
Версия 19:23, 27 января 2017
Определение: |
Натуральное число называется простым, если и не имеет положительных делителей отличных от и |
Определение: |
Натуральное число называется составным, если имеет по крайней мере один положительный делитель отличный от и . |
Свойства простых чисел
Утверждение (1): |
делится без остатка на . , — различные простые числа, то не |
Положительными делителями простого числа | являются только и . Простое число и . Значит не делится на
Утверждение (2): |
Для любого натурального числа , наименьший, отличный от положительный делитель всегда является простым числом |
Рассмотрим множество Пусть — положительные, отличные от делители числа . Множество M не пусто, так как . Значит в множестве существует наименьшее число . не простое, тогда существует такое, что и делится на . Так как делится на , то делится на . Значит не наименьшее число в множестве . Получили противоречие. Значит простое число. |
По этой теореме мы получаем алгоритм для поиска простых чисел "Решето Эратосфена".
Множество простых чисел
Утверждение: |
Множество простых чисел бесконечно |
Пусть множество простых чисел конечно и состоит из чисел , где — последнее, самое большое простое число.Рассмотрим число Значит число . Число не делится на числа . Так как при делении на эти числа получится остаток . (по утв. ). C другой стороны . Значит предположение, что множество простых чисел конечно неверно. |
Последовательность простых чисел начинается так:
См. также
- Натуральные и целые числа
- Основная теорема арифметики
- Теоремы о простых числах
- Разложение на множители (факторизация)
Источники инфомации
- А.А. Бухштаб. "Теория чисел" — Просвещение. 1966 г. — с. 28 - 33.
- И. М. Виноградов. "Основы теории чисел" — c. 18 - 20.