Вероятностное пространство, элементарный исход, событие — различия между версиями
(→См. так же) |
(→См. так же) |
||
Строка 31: | Строка 31: | ||
# '''Бесконечное вероятностное пространство''' <br/> Пусть задано множество следующих элементарных исходов: выпадение орла на <tex>i</tex>-ом подбрасывании честной монеты в первый раз. <br/> Тогда вероятность исхода с номером <tex>i</tex> равна: <tex> p(A_{i}) = \dfrac {1}{2^{i} } </tex>. <br/> Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным <tex> \dfrac {1}{2} </tex>. Найдем сумму этой прогрессии: <tex> \sum \limits_{i=1}^{\infty} p(A_{i}) = \dfrac { b_{1} } { 1 - q } = \dfrac { \dfrac{1}{2} }{ 1 -\dfrac{1}{2} } = 1</tex>. <br/> Так как сумма всех элементарных исходов равна <tex>1</tex>, то это множество является вероятностым пространством. | # '''Бесконечное вероятностное пространство''' <br/> Пусть задано множество следующих элементарных исходов: выпадение орла на <tex>i</tex>-ом подбрасывании честной монеты в первый раз. <br/> Тогда вероятность исхода с номером <tex>i</tex> равна: <tex> p(A_{i}) = \dfrac {1}{2^{i} } </tex>. <br/> Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным <tex> \dfrac {1}{2} </tex>. Найдем сумму этой прогрессии: <tex> \sum \limits_{i=1}^{\infty} p(A_{i}) = \dfrac { b_{1} } { 1 - q } = \dfrac { \dfrac{1}{2} }{ 1 -\dfrac{1}{2} } = 1</tex>. <br/> Так как сумма всех элементарных исходов равна <tex>1</tex>, то это множество является вероятностым пространством. | ||
− | ==См. | + | ==См. также== |
*[[Дискретная случайная величина]] | *[[Дискретная случайная величина]] | ||
Версия 03:59, 21 мая 2017
Содержание
Основные определения
Определение: |
Дискретным вероятностным пространством (англ. discrete probability space) называется пара из некоторого (не более, чем счетного) множества | и функции ( называется множеством элементарных исходов (англ. sample space), — элементарным исходом (англ. elementary outcome), такая, что .
называют дискретной вероятностной мерой (англ. discrete probability measure), или дискретной плотностью вероятности (англ. discrete probability density).
Определение: |
Множество | называется событием (англ. event).
, то есть вероятность события равна сумме вероятностей входящих в него элементарных исходов.
Определение: |
Прямым произведением вероятностных пространств (англ. direct product of probability spaces) | и называется такое вероятностное пространство , что
Другими словами, — множество всех пар элементарных исходов из и (т.е. декартово произведение этих множеств).
Примеры вероятностных пространств
- Конечные вероятностные пространства
- Честная монета
Множество исходов , где — выпадает орел, — выпадает решка. .
Рассмотрим все возможные события и их вероятности для этого пространства.
: . То есть вероятность того, что не выпадет ничего, равна нулю.
: . Вероятность того, что выпадет орел, равна одной второй.
: . Вероятность того, что выпадет решка, равна одной второй.
: . Действительно, вероятность того, что выпадет орел или решка, равна единице. - Нечестная монета
Множество исходов здесь такое же, как и в предыдущем пространстве, однако , где . - Игральная кость
Множество исходов . . Рассмотрим некоторые события этого пространства.
: . Вероятность выпадения одного из трех чисел — — равна одной второй.
: . Числа или выпадут с вероятностью одна треть. - Колода карт
. Здесь — масть, — достоинство карты.
Вероятность элементарного исхода этого пространства .
- Честная монета
- Бесконечное вероятностное пространство
Пусть задано множество следующих элементарных исходов: выпадение орла на -ом подбрасывании честной монеты в первый раз.
Тогда вероятность исхода с номером равна: .
Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным . Найдем сумму этой прогрессии: .
Так как сумма всех элементарных исходов равна , то это множество является вероятностым пространством.
См. также
Источники информации
- Википедия — Вероятностное пространство
- MachineLearning.ru — Дискретное вероятностное пространство
- Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.