Дискретная случайная величина — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Дискретная случайная величина)
(Дискретная случайная величина)
Строка 10: Строка 10:
 
}}
 
}}
  
Проще говоря, дискретные случайные величины {{---}} это величины, принимающие значения, которые можно пересчитать. В качестве примеров можно привести число  количество выученных билетов (среди конечного числа билетов), число звонков, поступавших на телефонную станцию в течение месяца (<tex>1, 2, 3\ldots</tex>).
+
Проще говоря, дискретные случайные величины {{---}} это величины, принимающие значения, которые можно пересчитать. В качестве примеров можно привести число  количество выученных билетов (среди конечного числа билетов), число звонков, поступавших на телефонную станцию в течение месяца (<tex>1, 2, 3, \ldots</tex>).
  
 
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.
 
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.

Версия 19:07, 30 мая 2017

Определение:
Случайная величина (англ. random variable) — отображение из множества элементарных исходов в множество вещественных чисел. [math] \xi\colon\Omega \to \mathbb{R}[/math]


Дискретная случайная величина

Определение:
Дискретной случайной величиной (англ. discrete random variable) называется случайная величина, множество значений которой не более чем счётно, причём принятие ею каждого из значений есть случайное событие с определённой вероятностью.


Проще говоря, дискретные случайные величины — это величины, принимающие значения, которые можно пересчитать. В качестве примеров можно привести число количество выученных билетов (среди конечного числа билетов), число звонков, поступавших на телефонную станцию в течение месяца ([math]1, 2, 3, \ldots[/math]).

Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.

Функция распределения

Определение:
Функция распределения случайной величины [math]\xi[/math] — функция [math]F(x)[/math], определённая [math]\forall x \in \mathbb{R}[/math] как [math]P(\xi \lt x)[/math], т.е. выражающая вероятность того, что [math]\xi[/math] примет значение, меньшее чем [math]x[/math]


Свойства функции распределения:

  • [math]F(x_1)\leq F(x_2)[/math] при [math]x_1 \leq x_2;[/math]
  • [math]F(x)[/math] непрерывна слева [math]\forall x \in \mathbb{R};[/math]
  • [math]\lim\limits_{x \to -\infty} F(x) = 0, \lim\limits_{x \to +\infty} F(x) = 1[/math].

См. также

Источники