Дискретная случайная величина — различия между версиями
(→Функция распределения) |
(→Источники) |
||
Строка 31: | Строка 31: | ||
* [[Математическое ожидание случайной величины]] | * [[Математическое ожидание случайной величины]] | ||
− | == Источники == | + | == Источники информации == |
− | * [http://kek.ksu.ru/EOS/TerVer/par7.html] | + | * [http://kek.ksu.ru/EOS/TerVer/par7.html ] |
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория: Теория вероятности ]] | [[Категория: Теория вероятности ]] |
Версия 19:54, 30 мая 2017
Определение: |
Случайная величина (англ. random variable) — отображение из множества элементарных исходов в множество вещественных чисел. |
Содержание
Дискретная случайная величина
Определение: |
Дискретной случайной величиной (англ. discrete random variable) называется случайная величина, множество значений которой не более чем счётно, причём принятие ею каждого из значений есть случайное событие с определённой вероятностью. |
Проще говоря, дискретные случайные величины — это величины, принимающие значения, которые можно пересчитать. В качестве примеров можно привести число количество выученных билетов (среди конечного числа билетов), число звонков, поступавших на телефонную станцию в течение месяца ( ).
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.
Функция распределения
Определение: |
Функция распределения случайной величины (англ. cumulative distribution function (CDF)) — функция | , определённая на как , т.е. выражающая вероятность того, что примет значение, меньшее чем
Свойства функции распределения:
- при
- непрерывна слева
- .