Задача о счастливых билетах — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается с...»)
 
Строка 1: Строка 1:
Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например, <tex>024321</tex>.
+
Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например, <tex>024321</tex>. Известно, что количество счастливых билетов из шести цифр равно <tex>55252</tex>.
 
{{Задача
 
{{Задача
|definition = Для любого натурального <tex>n</tex> найти количество <tex>2n</tex>-значных счастливых билетов.  
+
|definition = Для натурального <tex>n</tex> найти количество <tex>2n</tex>-значных счастливых билетов (<tex>L_n</tex>).
 
}}
 
}}
 +
== Решение с помощью динамического программирования ==
 +
Обозначим количество <tex>n</tex>-значных чисел с суммой <tex>k</tex> как <tex>D_n^k</tex> (число может содержать ведущие нули). <tex>2n</tex>-значный счастливый билет состоит из двух частей: левой (<tex>n</tex> цифр) и правой (тоже <tex>n</tex> цифр), причём в обеих частях сумма цифр одинакова. Количество счастливых билетов с суммой <tex>k</tex> в одной из частей равно <tex>(D_n^k)^2</tex>. Значит общее число билетов равно <tex>L_n = \sum_{k=0}^{9n} (D_{n}^{k})^2</tex>
 +
== Решение с помощью производящей функции ==
 
[[Категория:Дискретная математика и алгоритмы]]
 
[[Категория:Дискретная математика и алгоритмы]]
 +
[[Категория:Комбинаторика]]

Версия 03:05, 31 мая 2017

Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например, [math]024321[/math]. Известно, что количество счастливых билетов из шести цифр равно [math]55252[/math].

Задача:
Для натурального [math]n[/math] найти количество [math]2n[/math]-значных счастливых билетов ([math]L_n[/math]).

Решение с помощью динамического программирования

Обозначим количество [math]n[/math]-значных чисел с суммой [math]k[/math] как [math]D_n^k[/math] (число может содержать ведущие нули). [math]2n[/math]-значный счастливый билет состоит из двух частей: левой ([math]n[/math] цифр) и правой (тоже [math]n[/math] цифр), причём в обеих частях сумма цифр одинакова. Количество счастливых билетов с суммой [math]k[/math] в одной из частей равно [math](D_n^k)^2[/math]. Значит общее число билетов равно [math]L_n = \sum_{k=0}^{9n} (D_{n}^{k})^2[/math]

Решение с помощью производящей функции