Скрытые Марковские модели — различия между версиями
Paul1298 (обсуждение | вклад) м (→Алгоритмы на СММ) |
Paul1298 (обсуждение | вклад) м (→Ссылки) |
||
Строка 18: | Строка 18: | ||
* [[Алгоритм Баума-Велша]] {{---}} меняет <tex>a_{ij}</tex>, максимизируя вероятность наблюдения последовательности событий <tex>O</tex>. | * [[Алгоритм Баума-Велша]] {{---}} меняет <tex>a_{ij}</tex>, максимизируя вероятность наблюдения последовательности событий <tex>O</tex>. | ||
− | == | + | == Источники информации == |
* [http://en.wikipedia.org/wiki/Hidden_Markov_model Wikipedia - Hidden Markov model] | * [http://en.wikipedia.org/wiki/Hidden_Markov_model Wikipedia - Hidden Markov model] | ||
* [http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html Introduction in Hidden Markov models] | * [http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html Introduction in Hidden Markov models] | ||
* [http://www.cs.cornell.edu/Courses/cs4758/2012sp/materials/hmm_paper_rabiner.pdf A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition] | * [http://www.cs.cornell.edu/Courses/cs4758/2012sp/materials/hmm_paper_rabiner.pdf A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition] | ||
+ | |||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Марковские цепи]] |
Версия 14:30, 2 июня 2017
Определение: |
Скрытая Марковская модель — модель процесса, в которой процесс считается Марковским, причем неизвестно, в каком состоянии | находится система (состояния скрыты), но каждое состояние может с некоторой вероятностью произвести событие , которое можно наблюдать.
Модель представляет из себя марковскую цепь, для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от 1 до , как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии.
Марковская модель
задается как , где — состояния, — возможные события, — начальные вероятности, — матрица переходов, а — вероятность наблюдения события после перехода в состояние .Пример
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки. Дед Мороз с мешками — скрытая марковская модель. При этом 4 цвета — пространство из
возможных событий, 3 мешка — количество состояний , 5 подарков — наши наблюдений, каждое из которых представлено цифрой — номером цвета — от 1 до 5. Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером — вектор . Мы также знаем матрицу переходов , какова вероятность того, что от мешка с номером Дед Мороз переходит к мешку с номером . Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии .Алгоритмы на СММ
- Алгоритм Витерби — делает наилучшее предположение о последовательности состояний скрытой модели на основе последовательности наблюдений.
- Алгоритм "Вперед-Назад" — находит вероятность попадания в состояние на -ом шаге.
- Алгоритм Баума-Велша — меняет , максимизируя вероятность наблюдения последовательности событий .