Скрытые Марковские модели — различия между версиями
Paul1298 (обсуждение | вклад) м |
Paul1298 (обсуждение | вклад) (→Примеры) |
||
Строка 11: | Строка 11: | ||
== Примеры == | == Примеры == | ||
− | [[Файл: | + | [[Файл:СММ_пример.png|550px|thumb|right|Пример СММ]] |
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки. | Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки. | ||
− | Дед Мороз с мешками {{---}} скрытая марковская модель. При этом 4 цвета {{---}} пространство из <tex>M</tex> возможных событий, 3 мешка {{---}} количество состояний <tex>N</tex>, 5 подарков {{---}} наши <tex>K</tex> наблюдений, каждое из которых представлено цифрой {{---}} номером цвета {{---}} от 1 до 5. Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером <tex>i</tex> {{---}} вектор <tex>\pi[i]</tex>. Мы также знаем матрицу переходов <tex>A</tex>, какова вероятность того, что от мешка с номером <tex>i</tex> Дед Мороз переходит к мешку с номером <tex>j</tex>. Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии <tex>B</tex>. | + | Дед Мороз с мешками {{---}} скрытая марковская модель. При этом <tex>4</tex> цвета {{---}} пространство из <tex>M</tex> возможных событий, <tex>3</tex> мешка {{---}} количество состояний <tex>N</tex>, <tex>5</tex> подарков {{---}} наши <tex>K</tex> наблюдений, каждое из которых представлено цифрой {{---}} номером цвета {{---}} от <tex>1</tex> до <tex>5</tex>. Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером <tex>i</tex> {{---}} вектор <tex>\pi[i]</tex>. Мы также знаем матрицу переходов <tex>A</tex>, какова вероятность того, что от мешка с номером <tex>i</tex> Дед Мороз переходит к мешку с номером <tex>j</tex>. Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии <tex>B</tex>. |
== Алгоритмы на СММ == | == Алгоритмы на СММ == |
Версия 15:30, 4 июня 2017
Определение: |
Скрытая Марковская модель (англ. A hidden Markov model) — модель процесса, в которой процесс считается Марковским, причем неизвестно, в каком состоянии | находится система (состояния скрыты), но каждое состояние может с некоторой вероятностью произвести событие , которое можно наблюдать.
Описание
Модель представляет из себя марковскую цепь, для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от 1 до , как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии.
Марковская модель
задается как , где — состояния, — возможные события, — начальные вероятности, — матрица переходов, а — вероятность наблюдения события после перехода в состояние .Примеры
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки. Дед Мороз с мешками — скрытая марковская модель. При этом
цвета — пространство из возможных событий, мешка — количество состояний , подарков — наши наблюдений, каждое из которых представлено цифрой — номером цвета — от до . Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером — вектор . Мы также знаем матрицу переходов , какова вероятность того, что от мешка с номером Дед Мороз переходит к мешку с номером . Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии .Алгоритмы на СММ
- Алгоритм Витерби — делает наилучшее предположение о последовательности состояний скрытой модели на основе последовательности наблюдений.
- Алгоритм "Вперед-Назад" — находит вероятность попадания в состояние на -ом шаге.
- Алгоритм Баума-Велша — меняет , максимизируя вероятность наблюдения последовательности событий .