Скрытые Марковские модели — различия между версиями
Paul1298 (обсуждение | вклад) м (→Примечания) |
Paul1298 (обсуждение | вклад) (→Обучение) |
||
Строка 18: | Строка 18: | ||
==Обучение== | ==Обучение== | ||
− | Параметр задачи обучения СММ - это нахождение лучшего результата.Пусть дана выходная последовательность или множество таких последовательностей,лучший набор состояний переходов и вероятности эмиссии.Задача, как правило, для получения максимальной вероятностной оценки параметров СММ, учитывая множество выходных последовательностей.Не существует общего решения этой задачи, но для нахождения локального максимально правдоподобного результата может быть эффективно использован [[Алгоритм Баума-Велша]].Если же СММ используется для прогнозирования временных рядов, то можно использовать более изощренный метод, такой как | + | Параметр задачи обучения СММ - это нахождение лучшего результата.Пусть дана выходная последовательность или множество таких последовательностей,лучший набор состояний переходов и вероятности эмиссии.Задача, как правило, для получения максимальной вероятностной оценки параметров СММ, учитывая множество выходных последовательностей.Не существует общего решения этой задачи, но для нахождения локального максимально правдоподобного результата может быть эффективно использован [[Алгоритм Баума-Велша]].Если же СММ используется для прогнозирования временных рядов, то можно использовать более изощренный метод, такой как Марковская цепь Монте - Карло (англ. Markov chain Monte Carlo)<ref>[https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo Markov chain Monte Carlo(МСМС)]</ref>, что оказалось благоприятным для нахождения одной модели вероятности как с точки зрения точности, так и стабильности.<ref>Sipos, I. Róbert. Parallel stratified MCMC sampling of AR-HMMs for stochastic time series prediction. In: Proceedings, 4th Stochastic Modeling Techniques and Data Analysis International Conference with Demographics Workshop (SMTDA2016), pp. 295-306. Valletta, 2016.[http://1drv.ms/b/s!ApL_0Av0YGDLglwEOv1aYAGbmQeL PDF]</ref>Поскольку в МЦМК возникают значительные вычислительные нагрузки, то в случаях, когда вычислительная масштабируемость представляет также интерес, можно также прибегнуть к вариационные аппроксимации Байесовского вывода<ref>[https://ru.wikipedia.org/wiki/%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%B2%D1%8B%D0%B2%D0%BE%D0%B4 Байесовский вывод]</ref>, например, <ref>Sotirios P. Chatzis, Dimitrios Kosmopoulos, “A Variational Bayesian Methodology for Hidden Markov Models utilizing Student’s-t Mixtures,” Pattern Recognition, vol. 44, no. 2, pp. 295-306, Feb. 2011. [http://www.sciencedirect.com/science/article/pii/S0031320310004383]</ref>.Действительно, приближенный вариационный вывод предлагает вычислительную эффективность, сравнимую с максимизацией ожидания,ведь пока производящий профиль точности лишь немного уступает точной МЦМК-типа Байесовского вывода. |
− | |||
==См.также== | ==См.также== |
Версия 16:51, 4 июня 2017
Определение: |
Скрытая Марковская модель (англ. A hidden Markov model) — модель процесса, в которой процесс считается Марковским, причем неизвестно, в каком состоянии | находится система (состояния скрыты), но каждое состояние может с некоторой вероятностью произвести событие , которое можно наблюдать.
Содержание
Описание
Модель представляет из себя марковскую цепь, для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от до , как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии.
Марковская модель
задается как , где — состояния, — возможные события, — начальные вероятности, — матрица переходов, а — вероятность наблюдения события после перехода в состояние .Примеры
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки. Дед Мороз с мешками — скрытая марковская модель. При этом
цвета — пространство из возможных событий, мешка — количество состояний , подарков — наши наблюдений, каждое из которых представлено цифрой — номером цвета — от до . Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером — вектор . Мы также знаем матрицу переходов , какова вероятность того, что от мешка с номером Дед Мороз переходит к мешку с номером . Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии .Алгоритмы на СММ
Обучение
Параметр задачи обучения СММ - это нахождение лучшего результата.Пусть дана выходная последовательность или множество таких последовательностей,лучший набор состояний переходов и вероятности эмиссии.Задача, как правило, для получения максимальной вероятностной оценки параметров СММ, учитывая множество выходных последовательностей.Не существует общего решения этой задачи, но для нахождения локального максимально правдоподобного результата может быть эффективно использован Алгоритм Баума-Велша.Если же СММ используется для прогнозирования временных рядов, то можно использовать более изощренный метод, такой как Марковская цепь Монте - Карло (англ. Markov chain Monte Carlo)[1], что оказалось благоприятным для нахождения одной модели вероятности как с точки зрения точности, так и стабильности.[2]Поскольку в МЦМК возникают значительные вычислительные нагрузки, то в случаях, когда вычислительная масштабируемость представляет также интерес, можно также прибегнуть к вариационные аппроксимации Байесовского вывода[3], например, [4].Действительно, приближенный вариационный вывод предлагает вычислительную эффективность, сравнимую с максимизацией ожидания,ведь пока производящий профиль точности лишь немного уступает точной МЦМК-типа Байесовского вывода.
См.также
- Алгоритм Витерби — делает наилучшее предположение о последовательности состояний скрытой модели на основе последовательности наблюдений.
- Алгоритм "Вперед-Назад" — находит вероятность попадания в состояние на -ом шаге.
- Алгоритм Баума-Велша — меняет , максимизируя вероятность наблюдения последовательности событий .
Примечания
- ↑ Markov chain Monte Carlo(МСМС)
- ↑ Sipos, I. Róbert. Parallel stratified MCMC sampling of AR-HMMs for stochastic time series prediction. In: Proceedings, 4th Stochastic Modeling Techniques and Data Analysis International Conference with Demographics Workshop (SMTDA2016), pp. 295-306. Valletta, 2016.PDF
- ↑ Байесовский вывод
- ↑ Sotirios P. Chatzis, Dimitrios Kosmopoulos, “A Variational Bayesian Methodology for Hidden Markov Models utilizing Student’s-t Mixtures,” Pattern Recognition, vol. 44, no. 2, pp. 295-306, Feb. 2011. [1]